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Self-assembly of trimer colloids: effect of shape
and interaction range†

Harold W. Hatch,*a Seung-Yeob Yang,a Jeetain Mittalb and Vincent K. Shena

Trimers with one attractive bead and two repulsive beads, similar to recently synthesized trimer patchy

colloids, were simulated with flat-histogram Monte Carlo methods to obtain the stable self-assembled

structures for different shapes and interaction potentials. Extended corresponding states principle was

successfully applied to self-assembling systems in order to approximately collapse the results for models

with the same shape, but different interaction range. This helps us directly compare simulation results

with previous experiment, and good agreement was found between the two. In addition, a variety of self-

assembled structures were observed by varying the trimer geometry, including spherical clusters, elongated

clusters, monolayers, and spherical shells. In conclusion, our results help to compare simulations and

experiments, via extended corresponding states, and we predict the formation of self-assembled structures

for trimer shapes that have not been experimentally synthesized.

1 Introduction

Self-assembly is a promising method to manufacture new materials
with novel properties.1–5 Recent advances in colloidal synthesis of
anisotropic particles have allowed for improved design of the
particles and the superstructures into which they assemble.6–8

In addition to repulsive interactions stemming from shape aniso-
tropy, attractive anisotropic interactions between colloids may
be introduced by adding depletant molecules to the solution.9

Computer simulations and theoretical models have also been used
to understand and predict the properties of assemblies from their
basic building blocks.10–13

Trimer colloids were recently synthesized with one attractive
bead and two repulsive beads, where the attractive and repul-
sive interactions are governed by the smoothness or roughness
of the bead surfaces in the presence of depletant particles in
solution.14,15 Trimers of a single shape were experimentally
synthesized and observed to form elongated structures.15 These
trimers were also studied computationally in order to analyze
the self-assembled structures and compare with experiment.15

Other previous simulation studies include trimers with different
number of attractive beads,16,17 dimers,14,18–21 and tetramers.22

Recently, Avvisati and Dijkstra simulated trimers with tunable
interaction range and bond length in order to study the competition

between self-assembly and macroscopic phase separation.23 In our
previous work, we studied the self-assembly and macroscopic
phase separation for a variety of trimer shapes with one attractive
bead. But these trimer shapes did not corresponded to the
experimentally synthesized geometry, and the interactions (range
of the potential with respect to the particle size) were not similar
to experiment.24 In this work, we simulate shorter interaction
ranges (no macroscopic phase separation)25 than our previous
work,24 which are comparable to the experimental system.

To compare our simulation results with experiment and
between different computational models, we use the law of
extended corresponding states (ECS), which is based on equating
second virial coefficients.26 Originally proposed by Noro and
Frenkel for isotropic particles exhibiting macroscopic phase
separation, ECS is a useful way to draw comparisons between
models and identify which ones are essentially equivalent.26,27

Foffi and Sciortino found that patchy particles also obey ECS
near the gas–liquid critical point.28 In addition, ECS has been
used to study the phase behavior of active particle suspensions.29

In this work, we investigate this concept for self-assembling systems.
Although ECS has been previously used for self-assembling
systems,15 by matching the second osmotic virial coefficient of
experiments and simulations at one condition, ECS has not been
systematically validated for self-assembling systems with different
interaction ranges.

In this work, we perform Wang–Landau Transition-Matrix
Monte Carlo (WL-TMMC) simulations of trimers with one attrac-
tive bead and two repulsive beads for a variety interaction ranges
and trimer shapes. In order to simulate short-ranged interactions
with highly attractive potentials, several advanced algorithms
were employed to improve sampling, including configurational
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bias, geometric cluster algorithm, and aggregation volume
bias.30–34 We find that extended corresponding states can be
successfully applied to self-assembling systems. The results for
different interaction ranges collapsed by shifting their interaction
strength, provided that they are sufficiently short-ranged. In
addition, we predict that changes in the size of the repulsive
beads and the bond lengths of the experimental structure result
in the formation of spherical clusters, elongated clusters, spherical
shells and monolayers.

This paper is organized as follows. In Section 2, we describe
the trimer models and associated interaction potentials. The
simulation methods are described in Section 3. In Section 4, the
results and discussion section is split into a section on compar-
ing different models for the experimental trimer geometry in
Section 4.1 and exploring different self-assembled structures
formed by a variety of trimer geometries in Section 4.2. Finally,
conclusions are provided in Section 5.

2 Models

The trimers were composed of one attractive bead (blue) and
two repulsive beads (red), as illustrated in Fig. 1. The relative
placement of the two repulsive beads with respect to the central
attractive bead was defined by the bond angle, y, and the bond
length, L. In this work, the two bond lengths between either
repulsive bead and the attractive bead were equal, and the
trimers were rigid. The interaction between two beads, i and j,
was modeled by a modified, shifted-force Lennard-Jones (LJ)
potential,

USF�LJ
ij rij

� �
¼

ULJ
ij rij
� �
�ULJ

ij rcij

� �
� rij � rcij

� �@Uij

@rij
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(1)

ULJ
ij rij
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rij

� �2a

� sij
rij

� �a
" #

(2)

where rij is the center-to-center separation distance between
two beads, rc

ij is the potential cut-off, and sij = (si + sj)/2. The
parameter e is the well depth of the LJ potential interaction. The
parameter s is the length scale (or diameter) of the interaction
site (or bead). The diameter of the blue, attractive bead, s, was
fixed while the diameter of the red, repulsive beads, sr1 and sr2,

were varied independently. The range of the attractive interactions
was tuned with the parameter, a, as shown in Fig. 2.

In this work, we study four geometrically distinct trimer
models (A, B, C and D), which are shown in Fig. 1 and listed in
Table 1 for the various models. Model A is the same shape as the
recently synthesized colloidal trimer.15 The remaining models B,
C and D are variations of the experimental structure that we
investigated to predict the formation of self-assembled structures
for trimer colloid shapes that have not been experimentally
synthesized. Model B has larger repulsive beads than model A.
Model C is a linear version of model A, and model D is also linear,
but with size-asymmetric repulsive beads. Interactions between
beads were chosen to mimic those observed experimentally.
The experimental colloidal trimers possess short range attrac-
tive interactions with a center-to-center separation distance up
to approximately 1.02s.15 This attractive interaction is due to
the favorable excluded volume overlap of colloidal beads with a
smooth surface in depletant,14 and can be captured by high
values of the parameter a. Here we studied the behavior of a = 6,
12, 24, 50 and 128. To distinguish between different model

Fig. 1 The trimer models investigated in this work are illustrated using
VMD.36 The blue bead represents the smooth colloidal bead, and is
attracted to other blue beads. All other pair interactions are purely
repulsive.

Fig. 2 The potential energy of interaction, given by eqn (1), for a = 6
(dashed line), a = 50 (solid line) and a = 128 (dotted line). The blue lines
show the attractive interactions between smooth beads, shown in Fig. 1.
The red lines show the repulsive interactions between the rough beads,
shown in Fig. 1.

Table 1 The parameters of the trimer models investigated in this work,
and computed values for the excluded volume (see Appendix A) and the
theta temperature, B22(bey) = 0

Model sr1 sr2 L/s y a Vex/s3 bey

A 0.85 0.85 0.57 911 n/aa 1.009(1) 5.13(3)
A6 0.85 0.85 0.57 911 6 1.009(1) 1.36(1)
A50 0.85 0.85 0.57 911 50 1.009(1) 5.25(1)
A128 0.85 0.85 0.57 911 128 1.009(1) 6.35(2)
B50 1 1 0.57 911 50 1.315(1) 5.97(2)
B128 1 1 0.57 911 128 1.315(1) 7.04(5)
C50 0.85 0.85 0.57 1801 50 1.009(1) 5.80(2)
D50 0.7 1.1 0.3 1801 50 0.806(1) 5.93(2)

a This model possesses the same square-well and hard-sphere interactions
as reported in ref. 15.
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geometries and interaction ranges, we use the following naming
convention: Ma, where M denotes the model type and a denotes
interaction range. The short range attractive interactions for a = 50
and a = 128 more closely resemble the attractive range of the
colloids than the a = 6 case, which was utilized in our previous
work.24 For interactions between attractive, blue beads, the
potential cutoff distance, rc

ij/s, was 1.08, 1.2, 3, 3 and 3 for a =
128, 50, 24, 12, and 6, respectively. The rough colloidal beads have
less excluded volume overlap, and were therefore modeled as
being purely repulsive. All pair-wise interactions involving the
repulsive, red beads were made purely repulsive by setting the
cutoff to rc

ij/s = 21/a, also known as the Weeks–Chandler–Andersen
potential.35

The second osmotic virial coefficient, B22, has been found to be
useful in comparing models via extended corresponding states,26,28

and is a measure of the average potential energy between two
particles. By equating the second virial coefficients of two different
models, the relative location of their coexistence curves may be
estimated, provided that both models are sufficiently short-ranged.
The second osmotic virial coefficient is defined as

B22ðbeÞ ¼ �
1

2

ð
V

drf ðr; beÞ; (3)

f (r;be) = e�bU(r;e) � 1, (4)

where r is the relative position and orientation between two
particles, V is the domain of possible positions and orientations,
b = 1/kBT, and T is the temperature. Note that the notation for B22

is not related to the notation for model B. For the LJ potential, the
second osmotic virial coefficient was numerically computed by
Monte Carlo integration, as described in Appendix B.

The theta temperature is defined by the condition B22(bey) = 0,
and is provided in Table 1 for the various models. The theta
temperature, bey, is analogous to the Boyle temperature of a gas.

3 Methods

The self-assembly of the trimers was investigated with Wang–
Landau Transition-Matrix Monte Carlo (WL-TMMC) simula-
tions37–39 in the grand-canonical ensemble. This simulation
method computes the free energy, potential energy, pressure
and detailed structural information as a function of trimer density
(or concentration) at constant be (constant temperature or e), in a
single simulation. The equilibrium simulation of these self-
assembling systems was computationally expensive, where a single
simulation was composed of hundreds of billions of Monte Carlo
trials. The Monte Carlo trials are described in Section 3.1. Details
of the WL-TMMC simulations are provided in Section 3.2, and the
methods to analyze the structure of the clusters are described in
Section 3.3.

3.1 Monte Carlo trials

Models with short-ranged attractions and deep well-depths (e.g.,
a = 50 or 128 and be 4 7) require Monte Carlo algorithms that
efficiently simulate the formation and destruction of energetically
stable clusters. The following three Monte Carlo algorithms

involving collective motion or biased configurational sampling
were implemented to overcome large energy barriers.

The first of these algorithms is the Geometric Cluster Algorithm
(GCA).30,31 The GCA is a rejection-free algorithm that samples
cluster translation, rotation, creation and destruction more effi-
ciently than traditional single particle moves.40,41 The algorithm
proceeds as follows. A trimer and a pivot point in space are
randomly selected, and the trimer is reflected about the pivot. All
other trimers which interact with the pivoted trimer, in both the
old and newly pivoted positions, are then attempted to be pivoted
with a probability related to the pair interaction energy between
the two trimers. Each attempted pivot was carried out recursively
until all the interacting trimers were attempted to be pivoted. To
avoid inefficient moves involving pivots of most of the trimers in
the system, the pivot point was confined to a cubic box centered
on the first randomly selected trimer. The size of this bounding
cubic box was tuned via 5% changes every 106 trials, in order to
obtain an average target number of trimers involved in a pivot, set
to Nmax/5. Note that while the conventional rigid cluster moves
implemented in our previous work24 could not create or destroy
clusters due to detailed balance, the GCA does not suffer from this
limitation. The algorithm was optimized to minimize the number
of pair-wise computations. With this implementation, the energy
change of the entire GCA move was deduced from the stored pair-
wise interactions involving particles which were rejected from all
attempted pivots.

The second algorithm that was implemented to overcome
sampling difficulties was the configurational-bias (CB) method
with multiple first bead (MFB) insertions.32,42 This method
allows the individual beads of the trimer to be sequentially
grown in a computationally efficient manner. In this work, each
bead was grown with six trials. For insertions, deletions, or
regrowths of the entire trimer, this included multiple first
beads. Trimers were also partially regrown, and only one trial
position was used for the trivial one-bead partial regrowths.
Although CB is traditionally optimized for high densities, the
CB method naturally complements the third and final algo-
rithm described below.

The aggregation volume bias (AVB) method was the third Monte
Carlo move that was implemented to improve sampling.33,34,43–46

The aggregation volume bias method has been shown to improve
sampling of strongly associating fluids and was well-suited for the
strong, short-ranged interactions studied in this work. This is
because the AVB method targets transitions between the outside
and inside of the chosen aggregation volume, which mimics the
formation and destruction of clusters. The aggregation volume
was defined by the distance between attractive beads greater
than s and less than rc, independent of the repulsive beads.
Because the aggregation volume definition ignores the location
of the repulsive beads, a significant number of AVB attempts
lead to overlap with repulsive beads. This simplified the AVB
implementation, in comparison to the alternative method of
defining a trimer orientation-dependent aggregation volume.
But this implementation without orientation dependence was
efficient in tandem with the CB algorithm, because the CB
algorithm is likely to accept the non-overlapping configurations
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while growing the timers one bead at a time. Thus, for the grand-
canonical insertion moves with AVB, CB and MFB, the first bead
was an attractive bead, which was inserted within the aggregation
volume of another randomly selected attractive bead. For entire
trimer regrowths using AVB, CB and MFB, the AVB2 and AVB3
algorithms were employed for multiple first bead insertions of the
attractive bead. For AVB2 and AVB3, the relative probability to
select in-to-out or out-to-in moves was 50%. For more details on
the implementation of the combined AVB, CB and MFB algorithm,
see Appendix C.

In addition to the three Monte Carlo moves described above,
the following Monte Carlo trials were also utilized, as described
previously.24 These trials included single trimer translation, rota-
tion, insertion and deletion, smart Monte Carlo,47 rigid cluster
translation and rotations, and parallel configuration swaps. Refer
to ref. 24 for implementation details of these trials. The rigid
trimer rotations were performed about the centroid of the positions
of the three beads. Table 2 summarizes all of the Monte Carlo trials
that were employed in this work, and provides the relative weights
for the probabilities of attempting each type. The relative weights of
the different trials were chosen such that the computer would
spend roughly equal amounts of time processing the different
trials, optimized for the high density simulations. This weighting
strategy avoided an inefficient scenario where the majority of
computer time was spent on one type of trial, when that trial
may not sample well in a particular region of phase space.

3.2 Grand canonical Wang–Landau transition-matrix Monte
Carlo simulations

The Wang–Landau transition-matrix Monte Carlo method in
the grand-canonical ensemble is a flat-histogram method used
to obtain the free energy and potential energy as a function of
trimer density (or concentration) at constant be (temperature
or e). The trimer concentration, r, ranges from 0 to Nmax/V,
where Nmax is the maximum number of trimers and V = L3 is the
volume of the cubic periodic boundary. The self-assembling
‘‘phase diagram’’ was then constructed from a series of constant be
simulations. The Wang–Landau method computes the free energy
based on visited states statistics, while the transition-matrix
method computes the free energy based on transition statistics
between states. The combination of these two methods allows

one to benefit from both the fast estimate of the free energy using
visited states, and also improved long-term convergence using
transitions between states.48 The methods used to determine
convergence are described in the previous work.24 The simulations
were parallelized with overlapping subsets of the concentration
range assigned to individual processors, while attempting configu-
ration swaps between processors, as described previously.24

A series of grand canonical WL-TMMC simulations were per-
formed for Nmax = 250, L = 9s, and bm � 3 ln(L/s) = �4 to �6,
where m is the chemical potential and L is the thermal de Broglie
wavelength. For each model listed in Table 1, simulations were
conducted at constant 1/be in the range [0.09, 0.15] with a spacing
of 0.005. In order to verify that system-size dependent effects were
small, additional simulations were performed with L/s = 8, 9.5 at
1/be = 0.125 for a = 50 and at 1/be = 0.115 for a = 128. For L = 8s,
Nmax = 140. For L = 9.5s, Nmax = 265. Error bars in density were then
obtained as the standard deviation from the three independent
simulations at L/s = 8, 9, 9.5. In all cases, the error bars in density
were smaller than the symbols for figures in Section 4. Error bars
in be were simply determined by the spacing between simulations.

3.3 Structural analysis

Clusters, which were identified for rigid cluster moves and struc-
tural analysis, were defined as all trimers having an attractive bead
within the cut-off distance, rc, from at least one other attractive
bead in the cluster, obtained via a recursive flood-fill algorithm.
Statistics on the clusters were accumulated every attempted cluster
move, after the simulation swept more than one time, where a
sweep was defined as satisfying the condition that each macrostate
had been visited from a different macrostate at least 100 times.
After one sweep, trimer configurations were stored every 105 trials
in a compressed binary format for further analysis.

The boundaries between the different self-assembled structures
were obtained from the WL-TMMC simulations. One of these
boundaries occurred at the low density (or concentration) bound-
ary of the self-assembled structure, and is referred to as the critical
micelle concentration (CMC). The CMC is defined as the lowest
concentration at which micellar clusters form. After the concen-
tration is increased beyond the CMC, the concentration of the
free trimers and premicellar aggregates remains approximately
constant within a range of concentrations.49 Thus, the high
concentration boundary or limit of the micellar cluster is taken
to be the maximum concentration at which the concentration of
free trimers is approximately constant. The critical micelle tem-
perature (CMT) is the highest temperature (or lowest e) at which
micelles could exist. This temperature is not a true thermo-
dynamic critical point, and was simply named by analogy to the
critical micelle concentration.50 Finally, spherical clusters change
into elongated clusters at low temperature (or high e). More details
for determining these boundaries may be found in ref. 24.

4 Results and discussion

We studied the thermodynamic phase behavior of a variety of
self-assembling trimers with different interaction potentials and

Table 2 Monte Carlo trials and relative weights for the probability of
selection

Trial Weight

Single-trimer translation or rotation 5
Single-trimer insertion or deletion 5/4
Smart Monte Carlo 1/Nmax

Cluster translation or rotation 1/Nmax

Parallel configuration swap 10�4

Geometric cluster algorithm 5/Nmax

CB and MFB insertion or deletion 0.9
CB, AVB, and MFB insertion or deletion 0.1
CB, AVB2, and MFB regrowth 1/12
CB, AVB3, and MFB regrowth 1/12
CB two-bead partial regrowth 1/2
One-bead partial regrowth 1/2
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geometries. In Section 4.1, Noro–Frenkel extended corresponding
states is applied to self-assembly of the experimental structure
(model A) in order to compare models with varying interaction
ranges, and compare the models with experiment. Then, in
Section 4.2, various trimer geometries (i.e., models B, C and D),
were examined in order to predict the formation of self-assembled
structures which include spherical clusters, elongated clusters,
spherical shells and monolayers.

4.1 Comparison of experiment and models with different
interactions

Self-assembly phase diagrams were computed for a given trimer
shape using WL-TMMC simulations in the grand canonical
ensemble. Note that microscopic self-assembled structures do
not represent a thermodynamic phase, and therefore the term
phase diagram is used loosely to refer to the structures that form
in different regions of phase space, be and rs3. The stable regions
for the elongated clusters of models A50 and A128 are shown in
Fig. 3. The clusters formed here can be described as elongated
micelles. As be is decreased, the elongated structures eventually
break apart. In addition, a critical or minimum concentration of
trimers is required to form self-assembled structures (i.e., the
CMC), and this critical concentration decreases as be increases.
Finally, the high concentration boundary is insensitive to be,
relative to the sensitivity of the CMC with respect to be (see ref. 24
for definition of this boundary). Although models A50 and A128

possess the same geometry, the phase diagrams are quantita-
tively different because model A128 has a shorter interaction
range than A50. In this section, we quantitatively compare these
two models, and compare with experiment, by applying Noro–
Frenkel extended corresponding states.

Assuming that Noro–Frenkel extended corresponding states
applies to self-assembling systems, we seek to equate the second
osmotic virial coefficient, B22 of models over the entire range of be
values of interest. While other studies have matched second virial
coefficients in self-assembling systems at a particular value of
be,15 it is not clear what assumptions and errors may be
involved in using the matched second virial coefficient at one
be to compare the entire range of be of interest. In general, the
mapping between two models may require that each state point
be matched individually. The second osmotic virial coefficient
for models A6, A12, A24, A50 and A128 are shown in Fig. 4. However,
for sufficiently short-ranged interaction (aZ 24), the curves can be
approximately collapsed by shifting each curve by their respective
theta temperatures, bey, as shown in Fig. 5. Note that the theta
temperature is a function of both the particle geometry and
interaction range.

In order to understand the collapse due to shifting in be,
consider the second virial coefficient for two square-well (SW)
models with different interaction strength parameters (e1, e2) and
interaction range parameters (l1, l2), but the same hard core
diameter, s. The square well potential is defined as

USWðrÞ ¼

1 ros

�e s � r � ls

0 r4 ls

8>>><
>>>:

; (5)

where l determines the attractive interaction range. The second
osmotic virial coefficient for the SW may be evaluated analytically
with eqn (3),

BSW
22 ¼

2ps3

3
1þ 1� ebe

� �
l3 � 1
� �	 


: (6)

For the two different SW models to have the same B22 with different
interaction strengths, e1 and e2, and different interaction ranges, l1

and l2, the following condition must be true,

1� ebe1

1� ebe2
¼ l23 � 1

l13 � 1
: (7)

Fig. 3 Self-assembly phase diagrams for models A50 (red) and A128 (black).
Elongated clusters form at concentrations above the critical micelle
concentration, shown by the black � and red + symbols. The dashed line
along the critical micelle concentration is a linear fit to the data. The critical
micelle be is shown by the triangle. The high concentration boundary of
the micellar fluid is shown by the solid line. Error bars were obtained as the
standard deviation from three independent simulations. The snapshot is a
representative configuration of model A50 at the state point shown by the
black circle symbol.

Fig. 4 The second osmotic virial coefficient for A6 (blue solid square),
A12 (green star), A24 (blue open square), A50 (black +) and A128 (red�). The error
bars are smaller than the symbols.
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For short-ranged potentials (i.e., l- 1), as illustrated in Fig. 3, at
self-assembling conditions, ebe c 1. This condition is true for
short-ranged patchy models, when the attractive interactions is
large enough to overcome steric repulsions and promote cluster-
ing. With the condition ebe c 1, eqn (7) reduces to

b e1 � e2ð Þ ¼ ln
l23 � 1

l13 � 1

� �
: (8)

Thus, the difference between e1 and e2 is a function of the relative
interaction ranges for models with equivalent B22. Therefore, for
sufficiently short-ranged potentials, the B22 curves of two differ-
ent ranged models may be collapsed by shifting be by a constant
factor. A similar argument may be applied to the Lennard-Jones
potentials, eqn (1), if the potentials are sufficiently short-ranged
that they may be mapped onto square-well potentials. In this
short-ranged limit, the effective hard sphere diameter is insensi-
tive to be. Any value of the second osmotic virial coefficient may
be chosen to shift and collapse the data. This simplifies compar-
ison with experimental data, where it is more convenient to
obtain the second osmotic virial coefficient at only one depletant
concentration. In addition, this approach also simplifies the
comparison between many different models, and may be used
to determine when a model should be considered sufficiently
short-ranged. For example, in comparing between many models
with different interaction ranges, such as Fig. 7 of Avvisati and
Dijkstra,23 it is possible that shorter-ranged interactions could
have collapsed upon shifting the interaction strength by a
constant.

The phase diagrams for models A50 and A128, shown in
Fig. 6, were shifted by be*, defined by B22(be*) = �11.1s3, which
is the experimentally reported second osmotic virial coeffi-
cient.15 This choice of be* allows meaningful comparison with
experiment, where bey is not known. As predicted by extended
corresponding states (ECS), the CMC for A50 and A128 collapse
onto a single curve after shifting by be50* = 6.6 and be128* = 7.66
for a = 50 and 128, respectively. The results for models A50

and A128 may also be compared with the experimental and
simulation results of Wolters et al. using ECS. The data sets of
Fig. 9 of ref. 15 corresponding to fparticles = 0.01 were taken

using Plot Digitizer 2.6.6, and they were shifted by beexp* = 7,
corresponding to their reported second virial coefficient value
of B22(be*) = �11.1s3. These two curves are given in Fig. 6. The
error bars in the experiment were too large to quantitatively
evaluate the relative performance of the simulations. To further
investigate the differences in our data for models A50 and A128

with the simulation data of Wolters et al., we also calculated the
B22 for the simulation model of Wolters et al. as outlined in
Appendix B, and obtained a value of B22(beshift* = 6.31(1)) =
�11.1s3. Using this value of beshift*, the simulation data set of
Wolters et al. shows better agreement with the models A50 and
A128. We note that differences in the simulation data of Wolters
et al. and this work can be attributed to differences in simula-
tion methodology (e.g., canonical ensemble with single particle
moves versus grand canonical ensemble with flat histogram
methods and collective particle moves). While the cause of the
discrepancy cannot be determined without further investiga-
tion, this comparison between simulation results of different
models demonstrates the usefulness of ECS.

The critical micelle concentrations (CMC) for both A50 and
A128 are expected to collapse onto a single curve upon shifting,
following an analytical theory developed for self-assembly, indepen-
dent of extended corresponding states. For short-ranged potentials,
the CMC can be given by14

ln rVexð Þ ¼ ln
Vex

z3

� �
� hni

2
be; (9)

where Vex is the excluded volume of a trimer (see Table 1), rVex is
the volume fraction of free monomers and premicellar aggre-
gates, z is the width of the attractive potential well, and hni is the
average number of bonds in one trimer. Upon inspection of
eqn (9), the CMC’s for models with different interaction ranges,
but the same geometry, are shifted by a constant, in agreement

Fig. 5 The second osmotic virial coefficient, shifted by the theta solvent
condition, B22(bey) = 0, with the same colors and symbols as in Fig. 4.

Fig. 6 The concentration of free trimers (i.e., the CMC), shifted by e*, for
model A simulations and previously published experimental data.15 From
this work A50, be50* = 6.6 (red +) and A128, be128* = 7.66 (black �) models
are shown. The red and black dashed lines are the linear fits to the CMC for
A50 and A128, respectively. In addition, simulations (green open squares)
and experiments (blue circles) are shown from Wolters et al.15 with beexp* = 7.
Finally, the shifted simulation results of Wolters et al. with beshift* = 6.31 are
shown as green solid squares.
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with eqn (8). This is because lnr in eqn (9) is a linear function
of be with a slope that is independent of interaction range. The
CMC for both A50 and A128 were fit to eqn (9) using least-squares
minimization, and hni was found to be 4.5 and 4.2, respectively.
These values of hni are in agreement with ref. 15.

4.2 Simulations of self-assembled structures for various
geometries

In this section, variations on the experimental structure, models B,
C and D, were investigated in order to study the formation of self-
assembled structures for trimer geometries that have not been
experimentally synthesized. To begin, model B, which has larger
repulsive beads than model A, was found to form both spherical
and elongated clusters. Different interaction ranges for model B
collapsed upon shifting to match the B22. Finally, models C and D
are shown to form monolayers and spherical shells, respectively.

The phase diagrams for models B50 and B128 are shown in
Fig. 7, shifted by bey. Increasing the size of the repulsive beads
stabilized spherical clusters under some conditions. These
spherical clusters became elongated above a certain value of
be, resulting in a qualitatively similar type of phase diagram as
previously found for a different geometry.24 The critical micelle
concentrations for the B50 and B128 models also collapsed onto
a single curve using extended corresponding states, as shown in
Fig. 7. The average number of bonds, hni, was 4 for both B
models. The number of bonds, hni, was expected to be lower
than the model A value of E4.5, because model B possesses
larger repulsive ears than model A. The number of bonds was
also expected to decrease when transitioning from elongated to
spherical clusters. The low be boundary between the spherical
to elongated cluster regions for both the B50 and B128 models
were within two standard deviations. The differences in the
boundaries for models B50 and B128 may be the result of the
arbitrariness in the definition of the CMT, which is also
discussed in ref. 24. In addition, boundaries in be were deter-
mined with less precision than boundaries in concentration,
because the grand canonical simulations were performed at
constant be, and thus data at finer intervals of be were not
available and would require more simulations. The high
concentration boundaries of the micellar fluid were in relatively
good agreement. Discrepancies between the results for a = 50
and a = 128 may be due to subtle changes in the shape of the
particles. For example, the shoulder of the repulsive interac-
tions, shown in Fig. 2, changes the effective sizes of the beads.
Although these changes may be small, it is possible they
significantly affected the stability of self-assembled clusters.

A variety of self-assembled structures, shown in Fig. 8, formed
for the trimer particles with one attractive bead. For model A50,
the straight tubular structure, shown in Fig. 8a and b was the
predominant self-assembled structure, and was described pre-
viously.15 This straight tubular structure is visually characterized
by its cross-section of four trimers, and the straight line-up of the
beads with respect to the long axis of the elongated cluster. Spiral
elongated clusters, similar to those described previously,15 were
also observed, and occurred more frequently at lower values of be.
When the size of the repulsive beads was increased to that of

Fig. 7 Self-assembly phase diagrams for models B50 and B128, shifted
by bey. The symbols and colors are as described in the caption of Fig. 3.
The red and black circles are the spherical to elongated cluster transitions
for B50 and B128, respectively.

Fig. 8 The following selected structures are illustrated: straight elongated
clusters of model A50 with be = 8 (a), the same elongated cluster as ‘‘a’’
from a different angle (b), two spiral elongated clusters of model B50 with
be = 10 (c), spherical clusters of model B50 with be = 8 (d), mono-layer of
model C50 with be = 8 (e), and spherical shells of model D50 with be = 8 (f).
The blue boxes represent the periodic boundaries.
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model B50, spiral tubular structures become the predominant
self-assembled structure at higher values of be, as shown in Fig. 8c.
The spiral structures, are characterized by a cross section of
roughly three trimer particles, rather than four, with each succes-
sive trimer rotated about the long axis of the elongated cluster.
Spherical clusters were also found for model B50 at lower values of
be, as shown in Fig. 8d. Note that the spherical clusters were not
simply formed by a nucleation of an elongated cluster, because
multiple stable spherical clusters coexist without forming elon-
gated clusters. When the bond angle for model A50 was increased
to 1801, resulting in model C50, monolayers readily formed, as
shown in Fig. 8e. Finally, spherical shells were engineered from a
conical-shaped trimer, model D50, as shown in Fig. 8f. Although
only one particular trimer shape has been created in experi-
ments,15 our simulations suggest that many different structures
may self-assemble from trimer particles with one attractive bead by
changing the trimer geometry.

5 Conclusion

The self-assembly of trimer colloids with one attractive bead and
two repulsive beads was computationally investigated for differ-
ent interaction ranges and particle shapes. The stability region in
the rs3–be plane of the resulting self-assembled structures was
obtained over a range of trimer densities and interaction
strengths by using Wang–Landau transition-matrix Monte Carlo
simulations in the grand canonical ensemble. Extended corres-
ponding states was applied to self-assembling systems to com-
pare models with different interactions ranges, but the same
shape. In particular, the second osmotic virial coefficients of the
two models may be equated by shifting the interaction strength
by a constant. This constant shift in the interaction strength led
to collapse of the results over the entire range of state points of
interest. In addition, various trimer geometries were also inves-
tigated, and were found to form spherical clusters, elongated
clusters, monolayers and hollow spherical clusters (e.g., vesicles).

In future work, one may investigate potentials that possess
attractive interactions that are shorter-ranged than the ones
studied in this work by using the adhesive hard sphere
model.51,52 The adhesive hard sphere model may be similar
to the limit of a - N for eqn (1). But the difficulties of
sampling short range interactions with deep well depths
increase for larger values of a. For the adhesive hard sphere
model, the well width effectively vanishes, and special simula-
tion techniques are required.51

The continuous potentials studied in this work are important
to develop because they may be more readily simulated with
molecular dynamics simulations. For extended corresponding
states, the collapse of the second osmotic virial coefficients,
shown in Fig. 5, was demonstrated for continuous potentials
that require numerical computation of the virial coefficients, in
addition to discontinuous potentials that are more amenable to
theoretical calculations. Molecular dynamic studies of the
kinetics of cluster formation, and the effect of shear on self-
assembly, may be the subject of future publications.

A Excluded volume

Excluded volume, Vex/s3, was computed numerically by assum-
ing the beads are hard spheres with a diameter equal to their s
parameter.35 The calculation is similar to that described in
ref. 24; however, the effective size of the excluded probe is zero
in this work. In practice, the excluded volume was computed
numerically by overlaying the trimer with a cubic grid of np = 109

points and a side length, Vcube
1/3 equal to the largest s plus the

maximum intra-particle distance from a bead to the center-of-
mass. The excluded volume, Vex, is obtained by counting the
number of grid points which are inside at least one of the hard
spheres of the trimer, no,

Vex ¼
noVcube

np
: (10)

By computing the excluded volume of one hard sphere and
comparing to theoretical value of ps3/6, the numerical error is
expected to be on the order of 10�4s3.

B Second osmotic virial coefficient

The second osmotic virial coefficient for continuous potentials
(e.g., eqn (2)) was numerically computed by Monte Carlo
integration.

B22ðbeÞ ¼ �
V

2Ntrial

XNtrial

i

f ðri; beÞ; (11)

where ri is the relative position and orientation of a second
trimer with respect to the first trimer, f (ri;be) is given by eqn (4),
and i = 1,. . .,Ntrial randomly chosen positions and orientations
of a second trimer with respect to the first. For more details, see
the implementation described in ref. 24. In this work, B22/s3

was computed in increments of 1/be of 0.001, and the standard
deviations were obtained from a series of block averages of
Ntrial = 108.

C Aggregation volume bias in tandem
with configuration bias

Although aggregation volume bias (AVB), configuration bias (CB)
and multiple first bead (MFB) insertions have been described
elsewhere,32–34,42–45 the combination of the two bias methods is
not fully documented in a single source in the literature. An AVB
trial focuses on the region of space that a particle will be moved,
inserted or deleted. In this work, only the first bead is considered
for AVB trials, and the aggregation volume is defined without
any orientation dependence. To simplify notation, the following
short-hand names will be used. AV refers to the aggregation
volume. M is the particle to be moved in regrowths, added in
insertions, or removed in deletions. R is the region of the aggrega-
tion volume for the target particle (i.e., ‘‘in’’ or ‘‘out’’). The volume
inside the AV is vin, and the volume outside the AV is vout = V� vin.
The number of particles inside the AV is nin, and nout outside the
AV. Aggregation volumes are defined for specific pairs of bead
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types. Thus, nin only counts the number of beads in the AV that
match the correct type. In this work, only smooth, blue beads are
considered in the AVB algorithm, and therefore the number of
particles, N = nin + nout.

For grand-canonical insertions and deletions of particles with
AVB, CB and MFB, the algorithm proceeds as follows. The target
particle, J is selected randomly among all particles (reject if N = 0).
R is the ‘‘in’’ region of J, and nin = nin

J . There is an equal probability
of attempting an insertion or deletion. For insertions, the Metro-
polis acceptance probability for the trial is given by

pMet ¼ vinNz

ninðN � 1ÞW
CB; (12)

where z = s3ebm/L3 and WCB is the Rosenbluth term from config-
urational bias. To compute WCB, the first bead of M is randomly
inserted in R for a total of k random trials. The ith trial for the first
bead, b = 1, is selected with a probability

pi ¼
e�bu

b
i

wb
; (13)

wb ¼
Xk
j¼1

e�bu
b
j ; (14)

where ub
i is the potential energy of the first bead (b = 1) of M in the

ith trial position with all other particles. After selection of the ith
trial, the remaining b = 2 to nb beads are sequentially grown from
k trial positions each.

WCB ¼
Ynb
b¼1

wb=k: (15)

For deletions, M is selected randomly from R and the Metropolis
acceptance probability is

pMet ¼ ninðN � 1Þ
vinNz

WCB: (16)

To compute WCB, the position of the first bead of M and k � 1
other random positions of the first bead of M in R are used to
compute w1. Following eqn (14) and (15), WCB is computed for the
remaining beads for the original position of the beads in M, and
k � 1 other random positions, subject to the intramolecular
potential, as described elsewhere for CB.42

For regrowths with either AVB2 or AVB3, in tandem with CB
and MFB, one begins by selecting Rnew and Rold, which are the AV
regions for the ‘‘new’’ and ‘‘old’’ configurations in the CB
algorithm. For regrowths with AVB2, CB and MFB, the algorithm
proceeds as follows. The target particle J is selected randomly
(reject if N r 1). Next, the type of move is chosen to be ‘‘out -
in’’ or ‘‘in - out’’ of the AV of particle J with a probability Pbias or
1 � Pbias, respectively. If the ‘‘out - in’’ move type is chosen,
Rnew is the ‘‘in’’ region of J and Rold is the ‘‘out’’ region of J.
The Metropolis acceptance probability for the ‘‘out - in’’
move is

pMet ¼
Pbiasvout nin þ 1

� �
1� Pbiasð Þvinnout

WCB
new

WCB
old

; (17)

where WCB
new and WCB

old are the ‘‘new’’ and ‘‘old’’ Rosenbluth weights
determined by growing the beads with configurational bias, as
described below. If the ‘‘in - out’’ move type is chosen, Rnew is the
‘‘out’’ region of J and Rold is the ‘‘in’’ region of J. The Metropolis
acceptance probability for the ‘‘in - out’’ move is

pMet ¼
1� Pbias
� �

vin nout þ 1ð Þ
Pbiasvoutnin

WCB
new

WCB
old

: (18)

For regrowths with AVB3, CB and MFB, the algorithm proceeds
as follows. Two particles, K and J, are randomly selected with the
condition that J and K do not have non-overlapping AV’s (reject
entire trial if all AV’s overlap, or N r 2). Next, the type of move is
chosen to be ‘‘out - in’’ or ‘‘in - out’’ with a probability Pbias or
1 � Pbias, respectively. If the ‘‘out - in’’ move type is chosen,
Rnew is the ‘‘in’’ region of J and nin = nin

J . The ‘‘old’’ configuration
is then randomly chosen to be ‘‘in K’’ or ‘‘out J’’ with equal
probability. If ‘‘in K’’ is chosen, Rold is the ‘‘in’’ region of K, and
nout = nin

K . Otherwise, Rold is the ‘‘out’’ region of J, and nout = nout
J .

The Metropolis acceptance probability for the ‘‘out - in’’ move is

pMet ¼
Pbias nin þ 1

� �
1� Pbiasð Þnout

WCB
new

WCB
old

: (19)

If the ‘‘in - out’’ move type is chosen, Rold is the ‘‘in’’ region of
J, and nin = nin

J . The ‘‘new’’ configuration is then randomly
chosen to be ‘‘in K’’ or ‘‘out J’’ with equal probability. If ‘‘in K’’
is chosen, Rnew is the ‘‘in’’ region of K, and nout = nin

K . Otherwise,
Rnew is the ‘‘out’’ region of J, and nout = nout

J . The Metropolis
acceptance probability for the ‘‘in - out’’ move is

pMet ¼
1� Pbias
� �

nout þ 1ð Þ
Pbiasnin

WCB
new

WCB
old

: (20)

To grow the remaining beads in the CB algorithm and compute
WCB, the remaining algorithm is the same for either AVB2 or AVB3,
once Rnew and Rold are determined, as described above. The
Rosenbluth factors, WCB

new and WCB
old, are computed from the ‘‘new’’

and ‘‘old’’ configurations. M is selected randomly in Rold (reject if
not possible). The trial positions and Rosenbluth factor for the
‘‘new’’ configuration, WCB

new is computed as follows. The first bead in
M is placed in Rnew for a total of k trials, and the ith trial is selected
with probability given by eqn (13). After selection of the ith trial for
the first bead, the remaining beads are sequentially grown from

k trial positions each, and WCB
new

Qnb
b¼1

wb=k. The Rosenbluth factor for

the ‘‘old’’ configuration, WCB
old is computed as follows. The first bead

in M is placed in Rold for a total of k trials, including the original
position. w1 is computed via eqn (14) for the k trials. The Rosen-
bluth factor for the remaining beads, wb, are computed for k trials,

including the original position, and WCB
old

Qnb
b¼1

wb=k. The regrowth

trial move is then subject to the Metropolis acceptance criteria.
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20 G. Munaò, P. O’Toole, T. S. Hudson, D. Costa, C. Caccamo,
F. Sciortino and A. Giacometti, J. Phys.: Condens. Matter,
2015, 27, 234101.

21 G. Avvisati, T. Vissers and M. Dijkstra, J. Chem. Phys., 2015,
142, 084905.

22 B. Barz and B. Urbanc, J. Phys. Chem. B, 2014, 118, 3761–3770.
23 G. Avvisati and M. Dijkstra, Soft Matter, 2015, 11, 8432–8440.
24 H. W. Hatch, J. Mittal and V. K. Shen, J. Chem. Phys., 2015,

142, 164901.
25 G. A. Vliegenthart, J. F. M. Lodge and H. N. W. Lekkerkerker,

Physica A, 1999, 263, 378–388.
26 M. G. Noro and D. Frenkel, J. Chem. Phys., 2000, 113, 2941–2944.
27 F. Platten, N. E. Valadez-Pérez, R. Castañeda-Priego and
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