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Abstract

Recent interest in parallelizing flat-histogram transition-matrix Monte Carlo simu-

lations in the grand canonical ensemble, due to its demonstrated effectiveness in study-

ing phase behavior, self-assembly and adsorption, has led to the most extreme case

of single-macrostate simulations, where each macrostate is simulated independently
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with ghost particle insertions and deletions. Despite their use in several studies, no

efficiency comparisons of these single-macrostate simulations have been made with

multiple-macrostate simulations. We show that multiple-macrostate simulations are

up to 3 orders of magnitude more efficient than single-macrostate simulations, which

demonstrates the remarkable efficiency of flat-histogram biased insertions and deletions,

even with low acceptance probabilities. Efficiency comparisons were made for super-

critical fluids and vapor—liquid equilibrium of bulk Lennard-Jones and a three-site wa-

ter model, self-assembling patchy trimer particles and adsorption of a Lennard-Jones

fluid confined in a purely repulsive porous network, using the open source simulation

toolkit FEASST. By directly comparing with a variety of Monte Carlo trial move sets,

this efficiency loss in single-macrostate simulations is attributed to three related rea-

sons. First, ghost particle insertions and deletions in single-macrostate simulations

incur the same computational expense as grand canonical ensemble trials in multiple-

macrostate simulations, yet ghost trials do not reap the sampling benefit from propa-

gating the Markov chain to a new microstate. Second, single-macrostate simulations

lack macrostate change trials that are biased by the self-consistently converging rela-

tive macrostate probability, which is a major component of flat histogram simulations.

Third, limiting a Markov chain to a single-macrostate reduces sampling possibilities.

Existing parallelization methods for multiple-macrostate flat-histogram simulations are

shown to be more efficient than parallel single-macrostate simulations by approximately

an order of magnitude or more in all systems investigated.

1 Introduction

Transition-matrix Monte Carlo (TMMC) simulations in the grand canonical ensemble (GCE)

are promising methods because they allow for the direct calculation of complex fluid phase

behavior in a variety of applications. For example, in the study of liquid—vapor phase

equilibrium, the pressure, density and free energy of the vapor and liquid phases may be

calculated directly.1 In addition to equilibrium states, metastable states2 and the critical
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point3 as well as other thermodynamic or structural properties of interest at a given temper-

ature can also be obtained with these approaches. TMMC has also been successfully applied

toward the study of adsorption on surfaces4–7 and inside porous materials.8–11 TMMC may

also be used in studies of self-assembly to calculate critical micelle concentrations, critical mi-

celle temperatures and other structural transitions.12,13 Temperature extrapolation methods

further improve the efficiency of TMMC by reducing the number of required simulations,14–19

and initialization with Wang—Landau can reduce convergence times.9,20

TMMC can be parallelized in a variety of ways. In addition to all of the parallelization

methods available in the canonical ensemble (CE), including domain decomposition,21 paral-

lel configurational bias,22 and prefetching,23 flat-histogram simulations in the GCE may also

be parallelized by dividing the density range of interest into subranges assigned to different

processors.13,24 However, the existing literature has little quantitative evidence of efficiency

loss as more processors are used, or as the subranges become smaller.25 While there is ev-

idence that relatively small subranges may reduce efficiency,25–28 there are also legitimate

reasons to utilize small density subranges. To our knowledge, there is no detailed study of the

efficiency costs of this parallelization method in TMMC GCE simulations of vapor—liquid

equilibrium, self-assembly and adsorption.

For TMMC in the GCE, the smallest possible density subinterval is a single macrostate,

which means that the simulation has a fixed number of particles and the transitions to

neighboring macrostates are computed using ghost particle insertions and deletions. This

approach was utilized in a binary system in order to avoid a two dimensional biasing func-

tion.29 More recently, single-macrostate simulations were also utilized in a study of adsorption

of supercritical fluids17 and flexible30 and rigid31 adsorbents. Cases such as these may be

well suited for single-macrostate simulations because they avoid complications such as a two

dimensional biasing function or the insertion and deletion of large or complex molecules with

low acceptance probability.

A recent study of water adsorption utilized single-macrostate TMMC simulations and
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reported large efficiency gains compared to conventional GCE Monte Carlo (MC) simu-

lations.2,32,33 However, no efficiency comparison was made to multiple-macrostate TMMC

simulations in the GCE. To our knowledge, such a comparison remains lacking.

Note that single-macrostate simulations are somewhat unique to TMMC, because other

flat-histogram methods, such as Wang-Landau,34 require at least two macrostates. A single-

macrostate TMMC simulation does not allow transitions between macrostates, which means

there is no self-consistent convergence of a bias function that seeks to “flatten” the sam-

pling between macrostates. Instead, macrostate transitions in single-macrostate simulations

are obtained by performing ghost insertions and deletions that do not actually change the

microstate of the simulation or the Markov chain. In this manuscript, sampling refers to

changes in the microstate. In the CE, sampling involves perturbations in particle positions

and orientations. In the GCE, sampling also includes particle insertions and deletions, in

addition to CE sampling. Because ghost insertions and deletions require nearly the same

computational resources as GCE insertions and deletions but do not change the microstate,

sampling efficiency with ghost particles is expected to be reduced compared to GCE. This

sampling reduction could be negligible in situations where the CE sampling contributes more

than GCE sampling, such as temperatures and densities where acceptance probabilities of

GCE insertion and deletion trials are low. However, low GCE acceptance probabilities do

not necessarily mean GCE trials do not contribute to sampling. In addition, low acceptance

probabilities in GCE indicate high energy changes in ghost insertions and deletions, which

means more samples are required for convergence. Thus, using ghost insertions and deletions

does not solve the problem of low GCE acceptance probabilities, which is why configura-

tional bias ghost insertions and deletions are used.35 Currently, no studies to our knowledge

have quantified the sampling efficiency of flat-histogram biased GCE trials relative to ghost

insertions and deletions over a range of temperatures, densities and complex fluid behavior.

These open questions regarding the sampling efficiency of GCE trials are further com-

plicated by the difficulty of quantifying efficiency in the GCE. While the efficiency of MC

4



simulations in the CE has been quantified for decades using energy fluctuation36 and mean

squared displacement,37 these metrics are difficult to utilize in the GCE because they require

tracking individual properties of particles over long CPU times. However, efficiency metrics

that are amenable to the GCE as well as the CE have been utilized by observing the un-

certainty in computed properties of interest, such as the GCE average energy or number of

particles, as a function of CPU-time.38,39 Comparisons of different simulation methods are

typically difficult to perform directly and can often involve a trade-off that depends on the

model and properties of interest.40 Because the only difference between single and double

macrostate TMMC simulations is the sampling of biased GCE trials, we can directly quan-

tify the effect of these trials on the efficiency of the simulation in a straightforward and easy

to interpret comparison.

In this manuscript, the relative efficiency of single- and multiple-macrostate TMMC sim-

ulations in the GCE is quantified for a variety of complex fluids. This manuscript is organized

as follows. Section 2 describes the simulation methods and the models used to investigate

the relative efficiency in supercritical fluids, vapor—liquid equilibrium, self-assembly of mi-

celles and adsorption in a repulsive porous network. Additional details concerning methods

and models are also found in the Supporting Information. In Section 3, single- and double-

macrostate simulations are rigorously compared using the time-dependent standard deviation

of both the potential energy and the macrostate probability distribution. In addition, qual-

itative efficiency comparisons are made by quantifying the time-dependent convergence of

benchmark simulations of large macrostate ranges. Finally, conclusions and future work are

discussed in Section 4.
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2 Methods

2.1 Single- and Double-Macrostate Simulations

Figure 1 illustrates the differences between a single-macrostate and a double-macrostate

TMMC simulation in the GCE,1,41 where the relevant macrostate, N , is the number of fluid

particles. In the single-macrostate simulation, transitions to the next highest and lowest

macrostates are attempted in order to compute the transition probabilities, P (N → N + 1)

and P (N → N − 1), respectively, but these transitions are always rejected, as shown by the

red arrows in Figure 1, because they are outside the bounds of the allowed macrostate range.

Note that transitions which are always rejected are also referred to as ghost particle insertions

and deletions in this work. Similarly, a simulation with double macrostates also always rejects

transitions which would change the macrostate outside of the bounds. However, the double

macrostate simulation allows transitions between the allowed states, N and N +1, shown in

Figure 1. Thus, the attempted trials which transition between N and N+1 may be accepted.

These trials are referred to as GCE trials, or insertions and deletions. When accepted, these

GCE trials change the microstate of the simulation, which improves sampling, and the trial

acceptance is biased with the on-the-fly computed probability differences,41

∆ lnΠ = ln[P (N → N + 1)/P (N + 1 → N)]. (1)

This improved sampling is expected in double macrostate simulations relative to single-

macrostate simulations because GCE trials in double macrostate simulations can be accepted,

will change the microstate, and are therefore part of the sampling algorithm. In contrast,

ghost particle insertions and deletions will not change the microstate and thus are not a

sampling algorithm, as opposed to GCE. Instead, ghost particle insertions and deletions are

an analysis that could be computed from stored trajectories after CE sampling is performed.

GCE insertions and deletions, when accepted, can lead to large changes in the microstate
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Figure 1: An illustration of the difference between two TMMC simulations with a single
macrostate (top) and one TMMC simulation with double macrostates (bottom). In the
GCE, the macrostates are the number of fluid particles, N . The arrows indicate trials which
attempt to change the macrostate (i.e., insertions and deletions). The single red arrows
indicate an attempt to change the macrostate outside the bounds of the simulation. The
blue double arrow represents neighboring macrostates in a TMMC simulation which are in
the allowed range, and thus trial attempts between these macrostates may be accepted.

relative to a small displacement typical in CE sampling. Thus, even relatively low acceptance

probability GCE trials may contribute significantly to microstate sampling. Because both

single and double macrostate simulations spend the majority of computational time comput-

ing the energy differences of the proposed trials, the only added computational cost of the

double macrostate simulation is to apply the bias and possibly accept macrostate transitions.

This additional computational cost is often negligible in comparison to the energy calculation.

Thus, the major efficiency difference between the single and double macrostate simulations

is the additional sampling benefit afforded by biased transitions in the double macrostate

simulation, with negligible computational overhead. In other words, the parallelization cost

of splitting a double macrostate simulation into two single-macrostate simulations is the

automatic rejection of biased GCE trials, which is the cost required to completely decouple

the macrostates and make them trivially parallelizable.

This process of decoupling the macrostates also introduces other related sources of effi-

ciency loss. Confining the Markov chain to a single macrostate removes the self-consistent

convergence of a bias function, which some may consider an essential component of flat his-

togram methods, while also limiting the possible sampling algorithms. In single-macrostate

simulations, although the computational effort is spent to calculate ∆ lnΠ, it is not used
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to bias macrostate changes, as in multiple-macrostate simulations. Macrostate changes can

also allow efficient sampling, as will be discussed in subsequent sections for inhomogeneous

structures.42

2.2 Efficiency in Flat-Histogram Monte Carlo Simulations

For the results that follow, the CPU time-dependent standard deviation of a quantity of

interest is calculated in order to compare the efficiency differences of single and double

macrostate simulations. Standard deviations of the CE average potential energy, ⟨U(N)⟩,

and the relative macrostate probability, ∆ lnΠ, given by eq 1, were obtained using the

blocking method,43,44 as described in more detail in Section 1 of the Supporting Information.

Over long times, t, the standard deviation, σ, is expected to decrease linearly on a log—log

plot with a slope of negative one half,38,39

lnσ = b− 0.5 ln t (2)

where the intercept, b, was obtained by linear least squares regression. Rearrangement of eq

2 results in exp(b) = D = t1/2σ, where D is the difficulty as defined by Schultz and Kofke.39

The relative efficiency of a simulation is defined as follows. For two simulations to obtain

the same σ, the ratio of the CPU time required for simulation 1 relative to simulation 2 is

z12 = t1/t2, (3)

where z12 is the efficiency of simulation 2 relative to simulation 1. For example, when

simulation 2 is twice as fast, or obtains the same σ in half the time, as simulation 1, z12 =

t1/t2 = 2. Thus, if z12 > 1, then simulation 2 is more efficient than simulation 1. In this

work, we use the subscript 1 to denote a single-macrostate simulation and the subscript 2

to denote a double macrostate simulation. Thus, z12 is the efficiency of a double macrostate

simulation relative to a single-macrostate simulation. In practice, it is difficult to obtain the
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times at which two simulations have precisely the same σ. Instead, eq 2 may be substituted

into eq 3, resulting in

z12 = exp[2(b1 − b2)], (4)

where the slope and intercept, b may be fit from one or multiple simulations to obtain z12.

Relative efficiency is related to the difficulty, D = exp(b), proposed by Schultz and Kofke39

as z12 = (D1/D2)
2.

2.3 Simulation Models

Because flat-histogram (FH) TMMC simulations in the GCE have been shown in previous

studies to be effective tools for studying vapor—liquid phase behavior,1 self-assembly12 and

adsorption,4 the variety of models used in this study similarly span this range of phenomena

to allow for a broad conclusion to be drawn about the efficiency of FH methods relative

to ghost particle methods and to allow for a comparison of parallelization strategies. The

models investigated here are the bulk Lennard-Jones (LJ) fluid, bulk extended simple point

charge (SPC/E) water,45 a micelle-forming patchy trimer particle12,13 and adsorption of an

LJ fluid in a rigid and purely repulsive porous network shown in Figure 2. Here, we briefly

describe relevant aspects of the simulated systems. Additional details and parameters for

each fluid model can be found in Section 2 of the Supporting Information.

To study vapor—liquid phase behavior, bulk LJ and SPC/E fluids were simulated. Both

of these bulk fluids undergo a series of structural transitions between the vapor and liquid

phase.42,46 If these structural transitions are not well sampled, the relative accuracy of the free

energy difference between the vapor and liquid phases will decrease. Bulk LJ was simulated

at temperatures of kBT/ϵ = 0.7 and 1.5, while bulk SPC/E was simulated at temperatures

of 300 and 525 K. The maximum number of particles simulated in bulk LJ and SPC/E,

Nmax, was 475 and 300, respectively, corresponding to a dense fluid. To examine the effect

of system size, additional bulk LJ simulations were conducted for Nmax = 256 and 2000.
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To study self-assembly, patchy trimer particles with one attractive bead and two repulsive

beads were simulated at the temperatures and densities known to form micelles.12,13 Unlike

the bulk fluids, whose structures often span the periodic boundaries, many microscopic

structural transitions occur in this fluid of micelles and free monomers. The maximum

number of trimer particles was Nmax = 100 and the temperature was kBT/ϵ = 0.2 or 0.275.

Figure 2: Schematic illustrations of the patchy trimer particle with a blue, attractive bead
and two red, repulsive beads (a) and the unit cell of the porous network (b). Black squares
represent repulsive WCA sites, and white squares are open pores and channels. Starting
from the left, the 2-dimensional slices are stacked on top of each other.

To study adsorption, we simulated an LJ fluid confined in a porous network with multiple,

interconnected larger pores and smaller channels. In this case, the interaction of the porous

network is designed to be purely repulsive, which is expected to lead to structural transitions

that are associated with the successive filling of each pore with fluid. The maximum number

of fluid particles was Nmax = 100 and the temperature was kBT/ϵ = 0.3.

2.4 Flat-Histogram Monte Carlo Simulation Details

All simulations utilized the open source FEASST version 0.20.1 simulation software.47 To

aid in reproducibility, an example of the simulations described in this Section is provided

as a tutorial in FEASST. Additional simulation details are included in Sections 2 and 3 of

the Supporting Information. Each condition contained 32 independent simulations initiated

with different random number seeds. MC trials included rigid displacements, rotations,

single particle insertions and deletions. Patchy trimer simulations also had rigid cluster

translations and rotations, as described in ref 12. Simulations of the LJ fluid in the porous

network utilized dual-cut configurational bias (DCCB) for GCE trials.48
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The effect of specialized trials on efficiency was also studied by performing simulations

with and without the following trials. For one density series of simulations of the bulk LJ

fluid at kBT/ϵ = 0.7, DCCB with 8 first bead insertions and deletions was used with the

WCA reference potential. In addition, aggregation volume bias (AVB) was used in both the

CE49–51 and GCE52,53 for the bulk and confined LJ fluid with inner and outer radii of 0.9σ

and 1.375σ respectively. The CE AVB used AVBMC2 and a variant of AVBMC3 of equal

probability to attempt that was ten times lower than traditional displacement trials.47,51 The

AVBMC3 variant is described in Section 3 of the Supporting Information. The GCE AVB

insertions and deletions were also attempted with equal probability that was ten times lower

than traditional particle insertion and deletion trials.52,53 Note that the GCE AVB trials

in the porous network simulations also utilized 4 first bead insertions and deletions with

DCCB.13,48 Finally, an additional bulk LJ simulation also utilized trial displacements with

the maximum set to a constant value of half the periodic boundary length in each dimension,

and these whole-domain displacements were attempted with ten times lower probability than

the usual, tuned displacements.

3 Results and Discussion

3.1 Single Versus Double Macrostate Simulations

To compare the efficiency of the single and double macrostate simulations, consider Figure

1. If the macrostate changes indicated by the blue double arrow do not improve sampling,

then the two types of simulations should give the same error estimate if run for the same

total amount of CPU time. However, if the change in the macrostate from the blue double

arrow does improve sampling, the single-macrostate simulations will spend CPU time com-

puting those macrostate transition probabilities without the additional sampling and will

thus become less efficient than the double macrostate simulation.

The block standard deviation as a function of CPU time is expected to decrease on a
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log—log plot with a linear slope of −1/2, as shown in eq 2 and demonstrated in Figure 3 for a

supercritical LJ fluid with kBT/ϵ = 1.5 and N = 200. While both simulations were run for 24

hours, the single-macrostate simulations were parallelized with two simulations, and the CPU

time reported is the aggregate CPU time utilized by both cores. The relative efficiencies of

the two simulations are then obtained for 32 independent pairs of simulations, with the linear

fits shown by the often overlapping black lines in Figure 3. The linear fits were truncated in

this case to only include time beyond 1 h to ensure a fit to a linear region, which appears as 2

h for the single-macrostate simulations due to the cumulative time of both parallel processes.

For the potential energy, the efficiency of the double macrostate simulation relative to the

single-macrostate simulations is z12 = 6.6 with a standard deviation of the mean of 0.3; for

the change in the natural logarithm of the probability, the relative efficiency, z12, is 3 with

a standard deviation of the mean of 0.1. Thus, two simulations with a single macrostate

each consume about 3 to 6.6 times more CPU resources than one simulation with double

macrostates in order to obtain the same standard deviation for the potential energy and

∆ lnΠ, respectively. All of the remaining results in this manuscript report on the relative

efficiency with respect to the standard deviation of the change in the macrostate probability

distribution, σ∆lnΠ, because every GCE averaged property depends on it. However, in this

case and many others, the efficiency metrics based on potential energy gave results either

similar to or favoring multiple macrostates, but always within the same order of magnitude

range as metrics based on the macrostate probability distribution.

The computation of the efficiency of double macrostates relative to single-macrostate

simulations, z12, was illustrated in detail in Figure 3 at one condition. In Figure 4, we show

z12 over the entire range of models, densities and temperatures simulated. The first sanity

check is the N = 0 and 1 results for all the bulk simulations (e.g., not the porous network).

At N = 0 for bulk fluids, z12 ≈ 1 is expected because the sampling of 0 or 1 particles is trivial

and the efficiency is not affected by the sampling of biased GCE trials. This sanity check

also demonstrates that any overhead due to multiple-macrostate TMMC or parallelization
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Figure 3: Block standard deviation as a function of time with bulk LJ, N = 200, kBT/ϵ =
1.5 for one simulation with double macrostates (blue) and two simulations with a single
macrostate each (red). The block standard deviation of the energy and ∆ lnΠ is shown by
the top pair and bottom pair, respectively, including data and linear fits from 32 independent
simulations.

is minimal, or else it would affect the N = 0 and 1 results where the energy calculation does

not take up the majority of the CPU time. On the other hand, the N = 1 case in a porous

network depends on sampling with a non trivial energy calculation.54 In this case, z12 ≈ 4,

which already shows the single-macrostate simulations to be highly inefficient.

It is also important to note that all measures of relative efficiency compared simulations

with the same trial move sets, operational parameters, computer hardware and simulation

software. Thus, any optimization or inefficiency introduced by these arbitrary choices is

expected to affect both simulations to the same extent. The validity of this assumption is

demonstrated by the sanity check at N = 0 and 1 for bulk fluids in Figure 4.

The supercritical LJ fluid at kBT/ϵ = 1.5 is the least affected by sampling differences

of single and double macrostates, shown by the dashed black line in Figure 4. This is

likely because the supercritical configurations are most often homogeneous, as opposed to

inhomogeneous, where distinct structural motifs can be observed in simulations of vapor—

liquid equilibrium,42,46 self-assembly12 and adsorption.4 Despite the high temperature and

lack of structure, the single-macrostate simulations require up to three times more CPU time
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Figure 4: Efficiency of double macrostate relative to single-macrostate simulations, z12, as a
function of the number of fluid particles, N , divided by the maximum number of particles
for a high density fluid, Nmax, for the following simulations: bulk LJ (black circle) with
kBT/ϵ = 1.5 (dashed lines) and kBT/ϵ = 0.7 (solid lines), bulk SPC/E (red bar) with
T = 525 K (dashed lines) and T = 300 K (solid lines), trimer patchy particles (blue x) with
kBT/ϵ = 0.275 (dashed lines) and kBT/ϵ = 0.2 (solid lines), and the confined LJ fluid with
kBT/ϵ = 0.3 (green triangle). Lines between the points are guides for the eye. The gray
rectangle highlights z12 = 1 to 2. Error bars, often smaller than symbols, are the standard
deviation of the mean from 32 independent simulations.
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to obtain the same standard deviation than the double macrostate simulations, as reflected

by z12 = 3 in this density range. The relative efficiency, z12, then decreases to a value of

1.47 at Nmax = 475 or ρ = 0.928. Note that the parallelization methods should ideally

target z12 = 1, and that z12 = 2 is the absolute minimum efficiency for any reasonable

parallelization algorithm over two processors. For z12 = 2, the same standard deviation in

∆ lnΠ is obtained in one simulation of double macrostates run for half the total CPU time

as both single-macrostate simulations. This means that when z12 = 2, the parallelization

does not speed up the calculation, but requires twice as many processors. Moreover, z12 = 3

means that the parallelization over two processors requires 1.5 times as long as the double

macrostate simulation while using twice as many processors, so the parallelization not only

consumes more resources but actually increases the time it takes to obtain a result to the

desired precision. The gray rectangle in Figure 4 shows this region between z12 = 1 and 2

that represents the efficiency limit of parallelization algorithms. Even for the supercritical LJ

fluid, there are only limited cases at high and low density where single-macrostate simulations

are a reasonable parallelization strategy.

The relative efficiency, z12, increases by an order of magnitude when conditions with

vapor—liquid equilibrium are simulated. For example, when the temperature of the LJ

fluid is decreased to kBT/ϵ = 0.7 within the density range of vapor—liquid equilibrium,

the efficiency of the double macrostate simulation increases up to 20 times more than the

single-macrostate simulations. In addition, for SPC/E water, which also phase separates at

300 K and 525 K, double macrostate simulations are up to 10 to 20 times more efficient than

single-macrostate simulations. Even though insertion and deletion acceptance probabilities

decrease from high to low temperature, z12 increases. For example, the GCE insertion

and deletion acceptance probability of bulk LJ at N/Nmax = 400/475 is approximately

1.6× 10−3 at kBT/ϵ = 1.5 and 5× 10−4 at kBT/ϵ = 0.7. This demonstrates that GCE trials

can greatly impact the sampling efficiency even at low acceptance probabilities, because free-

energy biased GCE sampling is the only difference between the single and double macrostate
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simulations.

One explanation for the remarkably important contributions of biased GCE sampling

to simulation efficiency is that the shape of an inhomogeneous structure is likely to evolve

quicker with insertions and deletions than with simple small-scale displacements. A series of

structures form between the vapor and liquid, specifically the droplet, cylinder and slab.42,46

GCE insertions and deletions allow particles to be efficiently added to or removed from

the structures, the surrounding vapor, or interfaces. It is important for these metastable

transition-state structures to be sampled well or else the relative probability of the vapor

and liquid, which affects all equilibrium properties, may not be computed accurately. Later,

we will present results examining the efficiency impact of trial moves that are intended to

facilitate the sampling of these structures.

At conditions where patchy trimer particles self-assemble into micelles, z12, reaches 2

orders of magnitude, as shown by the blue lines in Figure 4. While the lower temperature of

kBT/ϵ = 0.2 formed micelles of a relatively precise size of 13 particles, the higher temperature

kBT/ϵ = 0.275 simulations formed clusters that were less well-defined and were near the

approximately defined critical micelle temperature. In both cases, Nmax = 100, allowing

for over half a dozen micelles. Because the only difference in the simulations is the biased

GCE sampling, these results show their strikingly important contributions to the simulation

efficiency. Note that rigid cluster translations and rotations are present in the simulation,

which are CE trials. Thus, it is possible for two partially formed micelles to approach each

another in the single-macrostate simulations by moving the clusters together as two wholes.

However, due to detailed balance, rigid cluster moves which result in two clusters becoming

one must be rejected, so coalescence must occur via single-particle translations and rotations.

On the other hand, biased GCE sampling allows particles to be added directly to the more

stable cluster and removed from the less stable cluster.

For the confined LJ fluid studied in this work, the relative efficiency, z12, reaches over 3

orders of magnitude, as shown by the green line in Figure 4. At these low temperatures of
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kBT/ϵ = 0.3, the fluid particles would coalesce and freeze or vitrify in bulk, but the fluid is

frustrated by the size and shape of the pores and the small channels connecting them. Thus,

the most stable configurations are those associated with successive pore filling. However, the

CE trials clearly struggle to sample these pores without biased GCE sampling. If two pores

were half filled, the CE trials would require each particle to traverse the channels in order to

fill a single pore. On the other hand, biased GCE sampling allows particles to be removed

from one pore and added to another. Thus, we will now consider different trial move sets

which improve the sampling in either the CE, or the GCE, to investigate their effect on the

relative efficiency.

The dependence of z12 on different Monte Carlo trial move sets is shown in Figure 5 for

the bulk and confined LJ fluid. For reference, the same data presented in Figure 4 for bulk

LJ fluid at vapor—liquid equilibrium for kBT/ϵ = 0.7 with only single particle translations,

insertions and deletions (i.e., no configurational bias) is shown by the black circles with a

solid line in both Figures 4 and 5. When the sampling of GCE insertions and deletions

is improved by using DCCB with 8 attempts of a WCA reference potential and a cell list,

the efficiency of the double macrostate simulation increases relative to the single-macrostate

simulations. This increase in z12 is likely because improved GCE sampling is wasted in

single-macrostate simulations that will reject the insertions and deletions regardless. The

effect of DCCB is especially pronounced at the higher densities, and takes z12 above the

critical value of parallel feasibility, z12 = 2, even at the highest macrostate, Nmax = 475,

ρ = 0.928. This is likely because DCCB increases the GCE acceptance probability at high

density without an overly burdensome calculation of the energy of the reference potential

due to a judicious use of a cell list. If the GCE trial acceptance probability is prohibitively

small, to the point that the GCE sampling contributes little to the overall sampling, then

z12 may approach unity. However, additional effort spent to improve the GCE sampling will

disproportionately help the multiple-macrostate simulations relative to the single-macrostate

simulations. Additionally, it is typically worth the effort to improve the GCE sampling using
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better trial moves if the GCE acceptance probabilities become prohibitively small with the

existing set of trials. Prohibitively large energies in ghost particle insertions and deletions

also reduce the efficiency of single-macrostate simulations, which is why configurational-bias

has also been implemented for ghost particles.35 The addition of GCE AVB moves leads to

modest increases in z12 relative to DCCB, as shown by the blue squares with dashed lines

in Figure 5. This result still reinforces the notion that increased effort put into improving

GCE sampling serves only to increase z12 in favor of multiple-macrostate simulations.

Figure 5: Same as Figure 4, except the bulk LJ fluid at kBT/ϵ = 0.7 is shown in black or
blue and the confined LJ fluid at kBT/ϵ = 0.3 is shown in green with the following trial
move sets: single particle translations, insertions and deletions (circles with solid lines) CE
AVB (x with dotted lines), and GCE AVB (square with dashed lines). The porous network
always used GCE DCCB, while the bulk LJ fluid also includes GCE DCCB (black triangles
with dotted lines) and whole-domain CE translations (black stars with dash dot lines). The
bulk LJ fluid with a smaller and larger system size, Nmax = 256 and 2000, are shown with
orange pentagons and purple horizontal bars, respectively.

While improving GCE sampling increases z12, improving CE sampling decreases z12.

This is demonstrated in the LJ fluid at kBT/ϵ = 0.7 by introducing either whole-domain

translations or CE AVB trials, shown by the black star and blue x, respectively, in Figure

5. Although increasing CE sampling may decrease z12 by up to a factor of 2, the single-

macrostate simulations are still up to an order of magnitude less efficient than the double

macrostate simulations. Thus, the improvement in the CE sampling for the trials investigated
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is not effective enough to completely overshadow the efficiency gains from GCE sampling.

To gain some understanding of the difficulty of replicating GCE efficiency in the CE,

consider the relationship between GCE insertions and deletions to whole-domain displace-

ments. A whole-domain displacement is essentially a combined deletion and insertion trial.

However, the GCE trials are more efficient by approximately the inverse of the acceptance

probability. As an example, if the probability of insertion and deletion is 0.1, then 100 at-

tempts of each type of trial would result in about 10 accepted insertions and 10 accepted

deletions. In the same CPU time, instead 100 whole-domain displacements could have been

attempted. However, the acceptance probability of the whole-domain displacement is the

product of the probabilities of insertion and deletion, which leads to only 1 accepted whole-

domain displacement in this example. Thus, GCE insertions or deletions are approximately

10 times more efficient in this example, which is the inverse of the acceptance probability.

Furthermore, the whole-domain trials will not benefit from GCE FH bias because they do

not change the macrostate.

The effect of system size on the efficiency is also shown in Figure 5 by comparing the

black circles with Nmax = 475 against the purple horizontal bars with Nmax = 2000 and

orange pentagons with Nmax = 256. The volume of the domain was scaled proportionally

with the number of particles so that the densities of the N/Nmax points are nearly equivalent

within the constraint that the number of particles is an integer. Other than the system size

difference, all other aspects of the simulations were identical. Increasing the system size

increases z12 for N/Nmax ≤ 0.42, while z12 is unchanged within statistical uncertainty for

N/Nmax ≥ 0.63. Decreasing the system size decreases z12 for N/Nmax ≤ 0.21, increases z12

for N/Nmax = 0.42, while z12 is unchanged within statistical uncertainty for N/Nmax ≥ 0.63.

These differences in z12 with system size may be attributed to the system-size dependence

of the inhomogeneous structures.

Similar effects of increased CE or GCE sampling seen in the bulk LJ fluid with vapor

equilibrium is also apparent in the confined LJ fluid. The green circles with the solid line in
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Figure 5 show z12 for the LJ fluid in a porous network at kBT/ϵ = 0.3 with tunable single-

particle translations and DCCB insertions and deletions. DCCB was used for all simulations

in the porous network because it is an efficient way to identify pores and channels, even for

N = 1. While the addition of CE AVB trials reduced z12 by over one order of magnitude

in some cases, this was still not enough to overcome the up to three orders of magnitude

in z12 in the original trial set. This order of magnitude reduction in z12 is likely due to the

ability of AVB CE moves to transfer particles between pores without needing to traverse the

channels. The addition of GCE AVB trials also led to modest differences in z12 compared to

the original or reference set of trial moves. Also note that AVB does not affect the efficiency

at N = 0 and 1 because AVB trials cannot be attempted with less than 2 particles.

3.2 Parallel Flat-Histogram Monte Carlo Simulations

While the previous section considered only single or double macrostate simulations, many

applications require simulations with hundreds or more macrostates (i.e., number of particles)

to span the relevant density range for studying phase behavior, self-assembly or adsorption.

In this section, the relative convergence of single-macrostate simulations are compared with

multiple-macrostate simulations when parallelized on high-performance computer (HPC)

nodes.

Figure 6: Illustration of nine simulations with single macrostates of 0 to 8 particles load
balanced on three processors, p1, p2 and p3 (a) and multiple-macrostate simulations on each
processor (b). The red and blue vertical lines are as described in Figure 1.

An illustration of two possible parallelization strategies, single-macrostate simulations or

multiple-macrostate simulations, is shown in Figure 6. In the first strategy shown in Figure
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6a, nine simulations of single macrostates with a particle number of 0 to 8 are simulated in

parallel with a pool of 3 processors, p1, p2 and p3. For this illustration, assume the time

to complete the simulation scales with the number of particles squared, N2. The goal is

to balance the load of each processor equally to reduce wasted CPU resources. For load

balancing, each processor simulates the highest particle number that has not already been

simulated. As an example, the first processor, p1 begins with the largest number of particles,

8. Then, the second processor, p2, simulates 7 particles and the third processor simulates

6, all with ghost insertions and deletions, as indicated by the red vertical lines in Figure

6. Because the third processor, p3, has the least particles, it finishes first and moves to 5

particles, and the second processor begins on 4 particles. The third processor then picks

up its third macrostate, N = 3, because the first processor is still processing 8 particles

(e.g., 82 > 52 + 62). This ultimately results in p1 simulating only 8 and 2 particles, while p2

simulates 7, 4, 1, and 0 particles and p3 simulates 6, 5, and 3. The expected total CPU time

of each processor is expected to vary by no more than approximately 5 %.

The second parallelization strategy shown in Figure 6b sets the number of multiple-

macrostate simulations equal to the number of processors. Contrary to the single-macrostate

simulations, each processor is fixed to a multiple-macrostate simulation with a contiguous

subset of macrostates and run for the same CPU time as all of the other processors. The

range is contiguous so transitions are allowed between macrostates, as shown by the blue

vertical dashed lines in Figure 1 and 6. In this case, load balancing is represented by how

subsets of macrostates are divided among processors. This load balancing choice is as equally

arbitrary as the choice of the number of trials per macrostate in single-macrostate simulations

and the order in which the macrostates are assigned to the processors.

Benchmark simulations over a large density range were performed to compare paralleliza-

tion performance. These benchmark simulations include simulations with one macrostate

each and simulations with multiple macrostates. For simulations with only a single macrostate

per processor, ghost insertions and deletions were performed, as described above and illus-
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trated in Figure 6a. These single-macrostate TMMC simulations are parallelized by pooling

the resources of all 32-cores of a node, e.g., running each macrostate until all macrostates are

finished. To improve load-balancing, the highest density simulations were run first because

they take the longest to complete. Each macrostate, N , was equilibrated with Nns/10 trials

and then run in production with Nns trials, where ns = 103, 104, 105, 106 for bulk LJ and

SPC/E and ns = 104, 105, 106, 107 for trimers and confined LJ.17 The simulation protocols

were otherwise the same as those described in Section 2.4, using the same trial move sets

as described for each model in Figure 4 with no AVB or whole-domain displacement trials.

The porous network simulations were the only model that used DCCB in these parallelized

simulations.

Benchmark TMMC simulations with multiple macrostates were also parallelized to com-

pare with the single-macrostate simulations. The trial move sets in these multiple-macrostate

simulations were identical to the single-macrostate simulations. The parallel scheme used in

these multiple-macrostate simulations follow the general approach illustrated in Figure 6b

and found in a number previous studies,9,12 without communication between processors.13,24

First, macrostate ranges for each processor are divided according to an arbitrarily chosen

exponential factor, γ. For bulk LJ, bulk SPC/E, patchy trimers, and LJ in a porous network,

γ = 2.5, 1.75, 1.5 and 1.5, respectively. For example, in bulk LJ, γ = 2.5 and Nmax = 475

resulted in the following macrostate minimums of the 32 processors: 0, 120, 158, . . . , 458,

464, 470. The minimum number of macrostates in the highest density simulations was 5 for

LJ with γ = 2.5 and Nmax = 475, while the minimum macrostate range was 2 for patchy

trimers with γ = 1.5 and Nmax = 100. These values of γ were arbitrarily chosen, with a

higher γ spending more CPU time on higher densities relative to lower densities. Section 3.3

discusses how to account for this arbitrary choice when comparing with single-macrostate

simulations.

For initialization, the minimum number of particles is obtained as described for the

single and double macrostate TMMC simulations. The TMMC benchmark simulations were
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terminated after 3.86, 8.06, 2.57 and 2.06 h, for bulk LJ, SPC/E, trimers and the porous

network, respectively, which are equivalent to the elapsed real time of the second highest

ns for single-macrostate simulations (i.e., ns = 105 for LJ and SPC/E and 106 for trimers

and confined LJ). The lnΠ over all macrostates is then obtained by splicing together all

of the collection matrices in order, in exactly the same fashion as the single-macrostate

simulations. The lnΠ from these benchmark simulations were then compared with reference

simulations that were run for a very long time. For the bulk LJ and SPC/E fluids, these

reference simulations were taken from the SRSW.55 For the patchy trimer particles and the

LJ fluid in a porous network, reference TMMC simulations were run in the same way as

these benchmark simulations, but for 50 days.

3.3 Parallel Benchmarks

To compare the efficiency of parallelized single-macrostate simulations with parallelized flat-

histogram simulations, we will examine the relative convergence of these two methods with

short benchmark simulations that are compared to a reference simulation that was run for

much longer. First, consider a reference simulation of a bulk LJ fluid at kBT/ϵ = 0.7

reweighted to the µ that gives equal probability of the vapor and liquid phases, as shown at

the top of Figure 7. The red dashed line is data taken from the SRSW55 for kBT/ϵ = 0.7.

The vapor peak on the left occurs at very small densities, while the liquid peak on the right

occurs around 432 particles for V = (8σ)3, and then the probability drops until truncation

at Π(N = 475) < e−50. The transition region becomes flat around 200 particles, where a

slab configuration is the minimum free energy structure and grows in width at constant free

energy at equilibrium42,46 (e.g., ∆ lnΠ ≈ 0 at N ≈ 200). We will now use this reference

simulation to compare the relative convergence of shorter benchmark simulations.

Single macrostate simulations were parallelized with a pool of 32 processors and run for

ns = 103, 104, 105 and 106, shown by yellow, green, blue and purple, respectively, in Figure

7. Because the best converged purple and blue simulations are not distinguishable on the
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Figure 7: Natural logarithm of the macrostate probability, lnΠ, for the Lennard-Jones fluid
at kBT/ϵ = 0.7, reweighted to equilibrium (top). Results from the SRSW are shown by a
red dashed line. Parallelized single-macrostate non flat-histogram simulations are shown for
ns = 103 (yellow), ns = 104 (green), ns = 105 (blue) and ns = 106 (purple). The black
dots show multiple-macrostate TMMC results obtained with the same CPU time as the
ns = 105 single-macrostate TMMC. The change in the natural logarithm of the macrostate
probability, ∆ lnΠ(N) (middle). The absolute value of the difference between the ∆ lnΠ of
the benchmark simulation and reference results, |∆∆ lnΠ| (bottom).

scale of lnΠ variations over the entire macrostate range, it is instructive to consider instead

the change in lnΠ from N−1 to N , ∆ lnΠ(N) = ln[Π(N)/Π(N−1)]. Also, ∆ lnΠ is a more

convenient quantity than lnΠ to consider for the following reasons: ∆ lnΠ is independent of

normalization,
∑

Π = 1, ∆ lnΠ shifts by only a constant when reweighting with respect to

µ, and ∆ lnΠ varies over N on a smaller scale than lnΠ. Even so, the best converged purple

and blue simulations are not distinguishable from the reference simulation on the scale used

for the middle of Figure 7. However, they are distinguishable when plotted as |∆∆ lnΠ|,

the absolute value of the difference in the ∆ lnΠ of the benchmark simulation relative to the

∆ lnΠ of the reference simulation, as shown at the bottom of Figure 7. A smaller |∆∆ lnΠ|

indicates better agreement between the benchmark and reference simulations. As expected,

the purple simulations have a smaller |∆∆ lnΠ| than the blue, on average, because the purple

was run for 10 times longer.

To investigate how the efficiency of these parallelized single-macrostate simulations com-
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pare with parallelized multiple-macrostate simulation, shown by the black dots in Figure 7,

were run for the same CPU time on the same HPC node as the single-macrostate simulations

with ns = 105, shown by the blue line in Figure 7. Note that the multiple-macrostate parallel

simulations were divided into the same number of subsets as available processors, 32, using

an exponential factor, γ = 2.5, which for example led to a subset of 0 to 120 on the first

processor, and 470 to 475 on the last processor, as described in more detail in Section 3.2.

For most macrostates, the multiple-macrostate simulations have a smaller |∆∆ lnΠ| than not

only the blue single-macrostate simulations with ns = 105, but even smaller than the purple

single-macrostate simulations with ns = 106, even though they were run for 10 times longer

than the multiple-macrostate simulations. However, at higher values of N , the multiple-

macrostate simulations have a similar |∆∆ lnΠ| as the single-macrostate simulations with

ns = 105.

In order to compare the relative efficiency of single and multiple-macrostate simulations,

we look at the distribution of |∆∆ lnΠ| values for each type of simulation. More efficient

simulations will have distributions favoring more negative values of ln |∆∆ lnΠ|. However,

a proper comparison must account for the computational effort that increases with N . For

example, obtaining lnΠ at high values of N requires more CPU time than low values of N ,

as discussed in Section 3.2. The arbitrary choice of γ to decompose the multiple-macrostate

simulation range into subsets is related to the arbitrary choice of Nns trials per single-

macrostate simulation. For example, N δns trials could instead be performed per single

macrostate. If δ = 0.5, a greater portion of computational effort would be spent on the

lower N values, relative to δ = 1. Because it would be difficult to choose a γ and δ that are

guaranteed to divide computational effort among macrostates in the same proportion, the

difference between the benchmark and long-time ∆ lnΠ must be weighted by the effort re-

quired to compute that difference as a function of macrostate. The amount of computational

effort to compute a change in energy at a given macrostate scales as approximately N2 for

the models considered in this manuscript because the potential cutoff is roughly half of the
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periodic domain length. For this reason, probability distributions of |∆∆ lnΠ| are weighted

by N2 as follows.

P (| ln∆∆ lnΠ|) =
∑

iN
2
i H(| ln∆∆ lnΠi|)∑

i N
2
i

(5)

where the sum over i is for each unique value of N and H(x) is 1 when x is within the

histogram subinterval or bin.

In Figure 8, we show P (ln |∆∆ lnΠ|) for the lowest temperatures in the following four

models considered: bulk LJ, bulk SPC/E, self-assembly of patchy trimers, and confined

LJ. A smaller ∆∆ lnΠ means better convergence of a short benchmark simulation, and the

black dotted results shown in Figure 8 were multiple-macrostate simulations run for the

same CPU time on the same node as the blue single-macrostate simulations. For the bulk

LJ fluid at kBT/ϵ = 0.7, the multiple-macrostate simulations ran as well as the ns = 105

at the highest densities and better than ns = 106 at the lowest densities. This qualitatively

agrees with the results of Figures 4 and 5. For the bulk SPC/E fluid at T = 300 K, the

multiple-macrostate simulations have ∆∆ lnΠ similar to the single-macrostate simulations

with ns = 106, even though the multiple-macrostate simulations were run for 10 times less

total CPU time. Similarly, the micelle-forming patchy trimers at kBT/ϵ = 0.2 have similar

∆∆ lnΠ to the single-macrostate simulations with ns = 107, even though the multiple-

macrostate simulation was run for 10 times less total CPU time. The LJ fluid in a porous

network at kBT/ϵ = 0.3 had much smaller ∆∆ lnΠ than the single-macrostate simulations

with ns = 107, even though the multiple-macrostate simulation was run for 10 times less

total CPU time. Thus, parallelization with multiple macrostates is an order of magnitude

or more efficient than parallelization with single macrostates in these practical applications.

4 Conclusions

Single macrostate simulations are shown to be inefficient relative to multiple-macrostate

TMMC for a variety of models, thermodynamic conditions and Monte Carlo trial move
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Figure 8: Probability distributions, P (ln |∆∆ lnΠ|), averaged over 32 parallelized simulations
with 50 bins each. Starting from the left panel, simulations of bulk LJ at kBT/ϵ = 0.7,
SPC/E at T = 300 K, trimers at kBT/ϵ = 0.2, and confined LJ at kBT/ϵ = 0.3 are shown
for parallelized single-macrostate simulations, starting with ns = 103 for bulk LJ and SPC/E,
and ns = 104 for trimers and confined LJ (yellow). Each darker color has 10 times more
ns than the preceding one, from yellow to green to blue to purple. The black dotted line
is multiple-macrostate TMMC simulations run for the same CPU time as the blue single-
macrostate simulation.

sets. Single macrostate simulations can be 1 order of magnitude less efficient than double

macrostate simulations for bulk vapor—liquid equilibrium calculations, 2 orders of magnitude

less efficient for self-assembly and 3 orders of magnitude less efficient for fluid adsorption

in a repulsive porous network. These results highlight the strikingly effective sampling of

grand canonical ensemble insertion and deletion trials in these cases. Improving the grand

canonical ensemble sampling with specialized trials makes single-macrostate simulations even

less efficient than multiple-macrostate simulations, while improved CE sampling reduces the

efficiency gap between single and double macrostate simulations. However, this reduction in

the efficiency gap was not enough to make single-macrostate simulations a reasonable choice

in the models, thermodynamic conditions and trial move sets investigated.

This study does not address the selection of optimal macrostate ranges in parallel simu-

lations.27 Future work could also include the simulation of larger or more complex molecules

than three site Lennard-Jones and water models. For complex molecules, specialized tech-

niques which improve the acceptance probabilities of insertions and deletions, such as config-

urational bias48 and growth expanded ensembles,56 are expected to work in favor of multiple
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macrostates relative to single macrostates, based on the comparisons made between different

trial move sets. In this study, the simulation efficiency is impacted by both the flat-histogram

bias and GCE microstate sampling in a coupled manner. Decoupling their efficiency impact

could be an area of interest in future work.
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