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Computational study of trimer self-assembly and fluid phase behavior
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The fluid phase diagram of trimer particles composed of one central attractive bead and two
repulsive beads was determined as a function of simple geometric parameters using flat-histogram
Monte Carlo methods. A variety of self-assembled structures were obtained including spherical
micelle-like clusters, elongated clusters, and densely packed cylinders, depending on both the state
conditions and shape of the trimer. Advanced simulation techniques were employed to determine
transitions between self-assembled structures and macroscopic phases using thermodynamic and
structural definitions. Simple changes in particle geometry yield dramatic changes in phase behavior,
ranging from macroscopic fluid phase separation to molecular-scale self-assembly. In special cases,
both self-assembled, elongated clusters and bulk fluid phase separation occur simultaneously. Our
work suggests that tuning particle shape and interactions can yield superstructures with controlled
architecture. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4918557]

I. INTRODUCTION

Biological molecules self-assemble into membranes, pro-
tein assemblies, viruses, and cells.1 Material design inspired
by nature is a promising route to create materials with novel or
enhanced properties by spontaneous self-assembly.2–5 In the
laboratory, colloidal particles can be synthesized with a variety
of shapes and directional interactions.6 These patchy particles
could potentially be used to mimic the self-assembly observed
at smaller length scales and to rationally design assemblies
from their basic building blocks.7

Studies of self-assembly range from those considering
only repulsive interactions, which define the shape of the par-
ticle,8,9 to those considering spherical particles with directional
attractions.10–12 In colloidal systems, both the shape and the
directional interactions are intimately coupled when depletant
is added to the solution.13 This depletion interaction drives
the assembly of lock-and-key colloids.14 For colloidal clusters
synthesized with smooth and rough beads, the smooth beads
attract more strongly to one another than to rough beads, due
to more excluded volume overlap at contact.15 The focus of
this paper is on the self-assembly of trimers, consisting of a
central attractive bead and two repulsive beads.

In an experimental and computational study, it was
observed that dimers with one attractive bead and one repulsive
bead self-assembled into spherical micelles.15,16 In addition,
it was demonstrated that trimers with one attractive bead and
two repulsive beads could be synthesized in the laboratory.
Recently, an experimental and computational study of trimers
with one attractive bead and two repulsive beads reported
that only elongated clusters were formed, in contrast to
the spherical micelles formed by dimers.17 In a different
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computational study, a flexible 3-mer chain with two attractive
beads and one repulsive bead at the end of the chain was found
to self-assemble.18 Tetramers with two attractive beads and
two repulsive beads were found to self-assemble into a variety
of structures and used to study protein aggregation.19

In this computational study, the phase behavior of a
family of trimer models with one attractive central bead and
two repulsive beads is investigated for a range of different
trimer shapes. Advanced simulation methods were used to
obtain the fluid phase behavior based upon thermodynamic
and structural definitions, rather than more phenomenological
approaches. In particular, Wang-Landau Transition Matrix
Monte Carlo (WL-TMMC) simulations were preformed in the
grand canonical ensemble, utilizing on the order of hundreds
of billions of trials per simulation. The trimers form spherical
micelle-like clusters, elongated clusters, and densely packed
cylinders. We show that there is a transition from self-assembly
to bulk fluid phase separation as bond length is reduced,
and we find that both fluid separation and elongated self-
assembled structures exist at intermediate bond lengths. We
also discuss how the phase behavior of the family of trimer
models may be understood in terms of the interaction between
particles.

This paper is organized as follows. In Sec. II, we describe
the family of trimer models studied in this work. We then
discuss the computational methods and the thermodynamic
and structural transition definitions in Sec. III. Results are
discussed in Sec. IV. Finally, we conclude and discuss future
work in Sec. V.

II. MODELS

In this paper, we studied the fluid phase behavior of a
family of trimer models. The trimer consisted of one central,
attractive bead and two repulsive beads, as shown in Figure 1
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FIG. 1. The family of trimer models investigated in this work illustrated
using visual molecular dynamics.21 Blue beads are attracted to other blue
beads, while all other pair interactions (red-red and blue-red) are purely
repulsive. The trimers are listed in order of increasing attractive region with
respect to repulsive region in the same order as Table I.

and Table I. Specifically, we studied how fluid phase behavior
was affected by simple geometric parameters, L and Θ, where
L is the rigid bond length between an attractive and a repulsive
bead and Θ is the rigid bond angle with the vertex on the
attractive bead. The beads interact via a shifted-force Lennard-
Jones (LJ) potential,

USF
LJ (r) = ULJ(r) −ULJ(rc) − (r − rc)

∂ULJ

∂r

�����r=rc
, (1)

ULJ(r) = 4ǫ

[
(

σ

r

)12
−

(

σ

r

)6
]

, (2)

where rc is the potential cutoff, U(r ≥ rc) = 0. For interactions
between attractive, blue beads, rc/σ = 3. All other pair-wise
interactions are purely repulsive, rc/σ = 21/6, also known
as the Weeks-Chandler-Andersen potential.20 Each bead has
equal σ,ǫ , and mass.

While the model described above may seem simplistic, it
is intended to capture basic geometric features that should be
relevant to a broad range of systems. Indeed, this trimer model
exhibited rich phase behavior with respect to self-assembly
and fluid phase separation (see Figures 2 and 3). The aim of
this study is to rationalize how the phase behavior and self-
assembly change with particle shape, using a general model
that may be applied to many different types of systems and
is computationally tractable. In this study, the Lennard-Jones
potential was chosen for simplicity.

III. METHODS

Flat-histogram sampling methods were used to investigate
the fluid phase behavior of the family of trimer models.
Specifically, WL-TMMC simulations22–24 in the grand canon-
ical ensemble were performed, as described in Sec. III A.
This powerful simulation method computes the free energy,
potential energy, and pressure as a function of density at

TABLE I. Trimer model parameters, L and Θ, and computed values for the
excluded volume (see Appendix B), critical temperature, and Boyle tempera-
ture (see Appendix C).

L/σ Θ Vex/σ
3 kBTc/ǫ kBTBoyle/ǫ

1 π/2 9.83 n/a 0.365(5)
1 π/3 9.31 n/a 0.435(5)

1 π/4 8.88 n/a 0.485(5)
0.75 π/3 8.02 n/a 0.505(5)
0.4 π/3 6.19 0.3117(1) 0.815(5)

0.25 π/3 5.41 0.4989(1) 1.17(1)
0 π/3 4.19 0.8798(7) 2.00(2)

FIG. 2. Illustration of selected structures. Unless otherwise specified, L =σ,
Θ= π/3, kBT /ǫ = 0.2, V = 729σ3, and the blue boxes represent periodic
boundaries. (a) Micelle, N = 13; (b) large micelle,Θ= π/4, N = 20; (c) small
micelle, Θ= π/2, N = 8; (d) elongated cluster, kBT /ǫ = 0.125, N = 59; (e)
elongated cluster, L = 0.4σ, kBT /ǫ = 0.15, N = 112; (f) elongated cluster
in liquid, L = 0.4σ, kBT /ǫ = 0.15, ρVex= 2.6; (g) cylinder, ρVex= 2.2; and
(h) same as (g) with a top-down projection.

FIG. 3. Fluid phase coexistence for L = 0 (squares), L = 0.25σ (circles), and
L = 0.4σ (triangles) with Θ= π/3. The critical points, shown by the symbols
at the maximum temperature, were obtained from fit to the law of rectilinear
diameters. The labeled black circle corresponds with the structure shown
in Figure 2(f). The error bars, smaller than symbols, were obtained as the
standard deviation from three independent simulations.
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constant temperature, as well as provides detailed structural
information, in a single simulation. The advantage of the
grand-canonical ensemble over the canonical ensemble is that
smaller system volumes can be used to capture physically
relevant density fluctuations. In the canonical ensemble, where
the total number of particles is fixed, the use of small
system volumes amounts to the imposition of a constraint.25

For self-assembling systems, this arbitrary constraint may
not agree with the preferred free monomer densities and
sizes of self-assembled structures in the thermodynamic
limit. The effect of this constraint in the canonical ensemble
diminishes with system size, and thus appropriate canonical-
ensemble simulations of self-assembly require significantly
larger systems that are computationally more expensive. In
addition, to improve sampling at low temperature, WL-TMMC
was combined with parallel-tempering. A single isotherm
simulation was typically composed of hundreds of billions
of trials. Simulation details are provided in Sec. III A, and the
methods used to determine phase coexistence and to locate
structural transitions are described in Sec. III B.

A. Grand canonical Wang-Landau transition-matrix
Monte Carlo

The grand canonical WL-TMMC method was used to
obtain the macrostate probability distribution, Π(N ; µ,V,T),
which is the probability to observe the number of trimers, N ,
for a given chemical potential, µ, volume, V , and temperature,
T . See Appendix A of Ref. 26 for implementation details of
WL-TMMC used here. The Wang-Landau update factor was
initially set to unity and was multiplied by 0.5 whenever the
flatness criteria of 80% was met. After the update factor was
smaller than 10−6, the collection matrix was updated. After
the update factor was smaller than 5 × 10−8, transition-matrix
Monte Carlo was performed with an update to the biasing func-
tion every 106 trials. To parallelize the single isotherm simula-
tions, each isotherm was divided into 12 overlapping windows
to span the entire density range, that is, the range of N values
from 0 to Nmax. Because lower density simulations are faster,
the parallelization was load balanced by decreasing window
size with increasing density by a power scaling with exponent
of 1.5. Neighboring windows overlapped by up to three trimers.
The free energy of the entire density range was recovered by
setting the free energy of neighboring windows equal at the
middle overlapping trimer number, and discarding the largest
and the smallest number of trimers (when neighbor present)
in each window. A window was converged if it swept at least
10 times, although most windows swept 100-1000 times while
waiting for the high density window to converge. A sweep
was defined as satisfying the condition that each macrostate
had been visited from a different macrostate at least 100 times.
After a simulation swept more than one time, canonical ensem-
ble averages, as described below, were accumulated for quan-
tities such as the potential energy and the squared potential
energy upon every successful trial attempt. Ideally, when runn-
ing a WL-TMMC simulation, a value of the chemical poten-
tial is chosen such that the difference between neighboring
macrostates in the macrostate distribution is minimized. For-
tunately, the exact choice of µ in the WL-TMMC simulations

TABLE II. Monte Carlo trials and weights for the probability of selection.

Trial Weight

Single-trimer translation or rotation 1
Single-trimer insertion or deletion 1/4

Smart Monte Carlo28 1/10Nmax

Cluster translation or rotation 1/5Nmax

Parallel configuration swap 5 × 10−6

is relatively unimportant, because the initial Wang-Landau part
of the simulation efficiently finds the order of magnitude of the
macrostate distribution, and then the macrostate distribution
may be reweighted to different values of µ.

The following Monte Carlo trials were employed, as listed
in Table II. Rigid trimer translations or rotations about the
center of mass were attempted with equal probability. Random
insertions or deletions of trimers were also attempted, subject
to Metropolis acceptance criteria.27 Collective trial moves
were also implemented to facilitate convergence with self-
assembled structures. Smart Monte Carlo was used to bias
the movement of trimers in the direction of their center-of-
mass forces.28 A second collective move type entailed rigid
translation or rotation of each cluster of trimers. A cluster was
defined as a set of trimers, where each trimer possesses an
attractive bead within a cutoff distance, 4σ/3, from one or
more other attractive beads in the set of trimers. The clus-
ters were obtained numerically by a flood-fill algorithm. To
obey detailed balance, cluster moves which resulted in a trimer
joining a different cluster were rejected. Statistics on the
clusters were accumulated at every attempted cluster move
after the simulation swept more than one time. For each
Monte Carlo trial that involved movement of trimers, the
parameter associated with the maximum possible translation
or rotation was optimized, via a 5% change every 106

trials, to yield approximately 25% acceptance of the trial
move. Another Monte Carlo trial involved configuration
swaps between neighboring density windows to facilitate
convergence. Configurational swap moves between adjacent
density windows were used to ensure self-assembled structures
were sampled in multiple windows. These configurational
swap moves helped to improve the parallelization efficiency,
and were performed at fixed N, V, T , and µ.27 Even with
the assortment of trial moves described above, structural
transitions between different self-assembled motifs were
difficult to sample at low T . To circumvent this difficulty,
parallel tempering was implemented to swap configurations
between neighboring temperatures, at fixed number of trimers,
from a series of closely spaced isotherms. The second type of
configurational swap move improved sampling of structural
transitions that occurred as temperature is decreased, and
was performed at fixed N,V with varying U,T, µ. When
the configuration swap trial is attempted, there is a 50%
chance to store the current configuration and a 50% chance
to swap the current configuration with a stored configuration
on an overlapping processor (if exists), subject to Metropolis
acceptance criteria.27

Grand canonical ensemble averages of an observable, A,
denoted as ⟨A⟩µVT, are obtained as a continuous function
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of ⟨N⟩µVT. Calculation of ⟨A⟩µVT is based on the canonical
average of property A, denoted as ⟨A⟩NVT, which can be
calculated during the course of the simulation,

⟨A(N)⟩NVT =

∑Ntrial

i=0 A(i)δ(ni − N)
∑Ntrial

i=0 δ(ni − N)
, (3)

where ni is the number of trimers in trial i, δ is the delta
function, and Ntrial are the number of sampled states in the
simulation. It follows that the grand-canonical average is

⟨A(⟨N⟩µVT)⟩µVT =

Nmax
∑

n=0

⟨A(n)⟩NVTΠ(n; µ). (4)

The quantity ⟨N⟩µVT can be obtained directly from the
macrostate distribution as

⟨N⟩µVT =

Nmax
∑

n=0

nΠ(n; µ). (5)

The average properties at other state conditions, namely,
different values of µ, can be obtained via reweighting the
macrostate distribution.

B. Determining phase coexistence and structural
transitions

In this section, we discuss the methods used to determine
fluid phase behavior. The two distinct types of behavior
observed in this work are macroscopic phase separation
and self-assembly (e.g., micellization), which also include
transitions between different structures. Note that structural
transitions that take place on a microscopic length scale, such
as micellization, are not true thermodynamic phase transi-
tions.29 Phase coexistence conditions between two macro-
scopic phases were obtained by reweighting the macrostate
distribution to a value of µ such that the probabilities of observ-
ing each phase are equal. Critical points were obtained by
fitting saturation densities to the law of rectilinear diameters.27

For the remainder of this section, we discuss the methods
used to determine the structural transitions involving the
spherical micellar fluid, which requires locating the low and
high densities, and low and high temperature boundaries for
the spherical micellar fluid. The low density boundary is
defined primarily by the critical micelle concentration (CMC),
which is the concentration above which a free trimer fluid
becomes a micellar fluid. Similarly, the high temperature
boundary is taken to be the maximum temperature at which
micelles are stable. At low temperature, the micellar fluid
transforms from roughly spherical structures to elongated
ones. The temperature at which this occurs is taken to
be the low-temperature boundary of the spherical micellar
fluid. The high density transition of micelles into more
solid-like structures is also approximately obtained, although
proper sampling at high densities is beyond the scope of
this work. Examples of these transitions are provided in
Appendix A.

The CMC, defined as the lowest concentration at which
micelles can form, was obtained by both thermodynamic
and structural definitions. The structural method directly

measures the CMC as the concentration of free trimers
and premicellar aggregates as a function of density.30 This
direct measurement of the CMC is possible because the
concentration of free trimers and premicellar aggregates, ρfree,
remains approximately constant as the fluid density, ⟨N⟩/V ,
increases at fixed temperature after micelle formation.29

Premicellar aggregates are defined as clusters with a number
of trimers less than or equal to the first minimum in the
histogram of aggregate size (typically 4 to 5 trimers), and
clusters are defined in Sec. III A. In practice, the density range
over which ρfree is constant was defined as the range where
ρfree was within some tolerance of the first local maximum.
In this work, we used a 75% tolerance. The structurally based
critical micelle concentration was taken as the average ρfree

in this fluid density range, and the high density boundary of
the micellar fluid was taken as the maximum density in this
fluid density range. The thermodynamic method to obtain the
CMC uses the density at which the equation of state deviates
from ideal trimer fluid behavior.31 The deviation appears as a
second linear regime, due to the formation of micelles, and the
density where the deviation occurs is defined by the point of
intersection of fits to the linear regimes. The equation of state
is obtained from the macrostate distribution, by reweighting it
to various µ values and computing the pressure as a function
of ⟨N⟩µVT/V by comparing the probability to observe zero
trimers to the ideal trimer fluid state.22 In order to precisely
obtain the equation of state in the density range of interest
with WL-TMMC simulations in the grand canonical ensemble,
both V and Nmax must be tuned to sample both the ideal and
micellar fluids. Depending on the temperature, V/σ3 ranged
from 93 to 643, while Nmax was ranged from 50 to 150. These
low density simulations for the thermodynamic definition of
the CMC were performed separately from the higher density
simulations which were used to obtain the CMC by the
structural definition.

The critical micelle temperature (CMT) was taken to be
the highest temperature at which micelles could exist. This
temperature is not a true critical point and was simply named
by analogy to the critical micelle concentration.29 As noted
in previous work, defining the CMT is somewhat arbitrary.29

Although one may define the CMT with structural information,
it is difficult to distinguish between self-assembled micelles
and supercritical clusters, similar to those formed in typical
homogeneous fluids. In previous work, a thermodynamic
signature of micellization was a system-size dependent density
of a second peak in the macrostate probability distribution
of the number of particles.32 Physically, the second peak
corresponds to the formation of a micelle, which happens at the
same number of trimers, regardless if the system size is slightly
increased. This thermodynamic signature of micellization was
used to define the CMT in this work, as demonstrated in
Appendix A. The error bars for the CMT simply depended
on the spacing between simulated isotherms. Specifically, the
CMT was obtained by identifying two isotherms. The first is
the highest temperature in which the fluid contained micelles,
and the second is the next highest temperature in which the
fluid did not contain micelles. This effectively brackets the
CMT. Therefore, the CMT must be in-between these two
isotherms. The reported value of the CMT was the average of
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these two isotherms, and the size of the error bar in temperature
is half of the difference in temperature of these two isotherms.
Finally, the density associated with the CMT is the critical
micelle concentration at the CMT. A conservative estimate
of the CMC at the CMT was obtained from the highest
temperature simulated isotherm which contained micelles.
Using this isotherm, the CMC at the CMT is within the density
range between the CMC and high density boundary of the
micellar fluid just below the CMT.

Structural transitions at low temperature were determined
using parallel tempering simulations. Conventional WL-
TMMC simulations in the grand canonical ensemble at fixed
T roughly identified the temperature region where elongated
clusters formed, and where to perform the parallel tempering
simulations. In the parallel tempering simulations, many
isotherms from grand canonical WL-TMMC simulations were
performed at closely spaced intervals in temperature to target
the micelle-to-elongated cluster transition region, and the
isotherms were allowed to exchange configurations between
temperatures at constant number of trimers. The configuration
exchanges in parallel tempering allowed for more frequent
sampling of the micelle to elongated cluster transition. This
transition was identified by both structural and thermodynamic
definitions. In the structural definition, the transition occurs
at the temperature at which there is an equal probability of
observing more than one micelle and one elongated cluster.
The maximum number of trimers, Nmax, in each isotherm was
set to a value which would typically contain two micelles,
when above the transition temperature. The thermodynamic
definition is the temperature at which there is a peak in the
constant volume heat capacity.33 The constant volume heat
capacity, CV , is computed as

⟨CV⟩NVT =
⟨U2⟩NVT − ⟨U⟩2

NVT

kBT2
, (6)

where U is the potential energy and ⟨. . . ⟩NVT is a canonical
ensemble average. The grand canonical ensemble average
is then obtained from Eq. (4). In these parallel tempering
simulations, twelve isotherms were simulated every ∆ ǫ

kBT

= 0.25 in the range ǫ
kBT
∈ [4.5,7.25]. In order to study the

density dependence of this transition temperature, two sets of
parallel tempering simulations were performed with different
volumes, V/σ3 = 729 and 5832.

IV. RESULTS AND DISCUSSION

We studied the phase behavior of a family of trimer
fluids as a function of bond length L and bond angle Θ. The
interesting finding is that dramatic changes in phase behavior
can be caused by simple changes in the geometry of the trimer.
In particular, the phase behavior changes dramatically from
macroscopic fluid phase separation without self-assembly at
low L to self-assembly without fluid phase separation as L

increases up to L = σ. In the special in-between case of
L = 0.4σ, both fluid phase separation and self-assembly
occurred simultaneously, where the latter resulted in the
formation of elongated clusters.

A variety of self-assembled structures were observed for
L/σ = 0.4,0.75,1, as shown in Figure 2. In particular, two

predominant types of self-assembled structures were formed in
the density range of interest in this study. The first type of self-
assembled structures can be described as micelle-like spherical
clusters. These micelles were of variable size, depending on
both the state conditions and the shape parameters of the
trimer model, shown in Figures 2(a)–2(c). The second type
of self-assembled structure can be described as elongated
clusters, shown in Figures 2(d)–2(f). One important feature
of elongated clusters is that they may form at low density.
Also note that these elongated clusters may vary in shape,
depending on both L and Θ. A third type of self-assembled
structure, packed cylinders, shown in Figures 2(g) and 2(h), is
only observed at high density. Simulations in this high density
regime are beyond the scope of this study due to sampling
difficulties.

Fluid phase separation was observed for L/σ = 0,0.25,
0.4 andΘ = π/3, as shown in Figure 3. In Figure 3, the density,
ρ, is normalized by the excluded volume, Vex (see Table I), in
order for the phase coexistence curves for different values
of L to be in a similar density range. For the largest bond
length exhibiting fluid phase separation, L = 0.4σ, both the
low- and high-density coexisting liquids are inhomogeneous
due to the presence of elongated, self-assembled structures
(see Figures 2(e) and 2(f)). Incidentally, we observe an
approximately linear dependence of the critical temperature on
the bond length in the range investigated, as shown in Figure 4.
The line in Figure 4 is a linear fit, kBT

fit
c (L)/ǫ = aL/σ + b,

where a = −1.40(6) and b = 0.86(2). This linear trend is
reminiscent of a linear trend in the critical temperature with
respect to relative attraction between two beads of a dimer
model reported previously.34

In contrast to the macroscopic phase separation observed
for bond lengths L ≤ 0.4σ, trimer fluids with L ≥ 0.75σ
self-assembled into micelles and did not exhibit macroscopic
phase separation. In Figure 5, we show phase diagrams using
the approach described in Sec. III B and Appendix A for
the following four trimer model parameter pairs denoted
as (L,Θ): (σ,π/3), (σ,π/2), (σ,π/4), and (0.75σ,π/3). For
all cases, the critical micelle concentration increased with
temperature. In addition, the critical micelle concentration
increased with bond angle, Θ, for L = σ at fixed T . At a

FIG. 4. Critical temperature as a function of bond length with Θ= π/3,
shown by symbols, with linear fit. The error bars, smaller than symbols, were
obtained as the standard deviation from three independent simulations.
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FIG. 5. Phase diagrams for L =σ, Θ= π/3 (top left); L =σ, Θ= π/2 (top right); L =σ, Θ= π/4 (bottom left); and L = 0.75σ, Θ= π/3 (bottom right). The
labeled black circles correspond with the structures shown in Figure 2. The critical micelle concentration is shown with the structural definition (green x) and
thermodynamic definition (black +). The critical micelle temperature is shown by the red triangle. The micelle to elongated cluster transition is shown with the
structural definition (open blue triangle) and thermodynamic definition (open blue circle). The high density boundary of the micellar fluid is shown by the solid
red squares. Lines are guides to the eye.

selected temperature, error bars for the CMC and the high
density boundaries of the micellar fluid were computed as the
standard deviation from three independent simulations with
volumes, V/σ3 = 512,729,857.375. A secondary purpose for
using different values of V in the three independent simulations
was to verify that the results were not system-size dependent,
and indeed they were not dependent on system size. The
critical micelle temperature increased with decreasing bond
angle, Θ, for L = σ. For the spherical to elongated cluster
transition temperature, a set of parallel tempering simulations
yielded a small density range for the transition temperature.
Recall that this represents a low-temperature boundary for
the spherical micellar fluid. In order to investigate the density
dependence of this spherical to elongated cluster transition
over a greater density range, two sets of parallel tempering
simulations were performed at volumes V/σ3 = 729 or 5832.
The spherical to elongated cluster transition appeared to be
relatively insensitive to density within the error bars of the
simulations.

In Figure 6, the average cluster size as a function of
temperature and density is shown for the following four
trimer model parameter pairs denoted as (L,Θ): (σ,π/3),
(σ,π/2), (σ,π/4), and (0.75σ,π/3). Cluster sizes increase
with increasing density and decrease with increasing temper-
ature. In addition, cluster sizes decrease as the bond angle, Θ,
is increased from π/4 to π/2. Only temperatures above the
spherical to elongated cluster transition are shown in Figure 6.
This T range was chosen because, when elongated clusters
form, the majority of trimers in the system are part of a single

cluster, and the cluster size is trivially equivalent to the number
of trimers in the system.

The fluid phase behavior of the family of trimer models
may be understood in terms of the relative size of the
repulsive and attractive regions.32,34,35 As the repulsive region
and anisotropy increase, self-assembly is more favored than
macroscopic phase separation. One way to quantify the relative
sizes of the repulsive and attractive regions is to assume
that the attractive region stays fixed, while changes in the
repulsive region are due to changes in the net excluded volume
of the beads. It thus follows that the smallest bond length
corresponds to the smallest repulsive region and the longest
bond length corresponds to the largest repulsive region. The
models in Figure 1 and Table I are listed in order of decreasing
excluded volume. As the excluded volume increases with
L, the trimer shifts from fluid phase separation at low L to
self-assembly at high L, with the special case of L/σ = 0.4
possessing both fluid phase separation and self-assembly. The
relative change in the size of attractive to repulsive regions
may also be observed via the Boyle temperature, kBTBoyle/ǫ .
The Boyle temperature is the temperature at which the second
virial coefficient is zero (see Sec. III), where the attractive
and repulsive contributions cancel to yield the compressibility
of an ideal trimer fluid. Finally, the relative size of the
attractive region with respect to the repulsive region also
explains the change in the critical temperature, kBTc/ǫ , where
kB is the Boltzmann constant. Given that the trivial isotropic
case of L = 0 possesses a critical temperature, increasing the
repulsive region reduces the critical temperature. Increasing
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FIG. 6. Average number of trimers in a cluster for L =σ, Θ= π/3 (top left); L =σ, Θ= π/2 (top right); L =σ, Θ= π/4 (bottom left); and L = 0.75σ, Θ= π/3
(bottom right). Contour spacing is one trimer and was obtained by 3-dimensional fit to a number of isotherms. The thick, solid black lines are the boundaries
shown in Figure 5. The contours were truncated at 40 trimers.

the anisotropy of the model yielded self-assembled structures
but also reduced critical temperatures. Only in special cases,
one may observe both self-assembled structures and phase
coexistence (e.g., Figures 2 and 3 and Refs. 34–37).

The results in this study are consistent with the experi-
mental and computational results of Wolters et al., who studied
a trimer fluid similar to the ones studied in this work.17

The results in this study may also be used to guide future
experiments on tuning the shape of the trimers to control
the formation of self-assembled structures that have not been
observed in experiments. While the attractive interactions in
Wolters et al. is shorter-ranged than in this work, the fluid
phase behavior of their model may be compared with this
work. Assuming Noro-Frenkel extended corresponding-states
applies,38,39 the phase behavior of one model may be mapped
onto another model with a different interaction range by
matching the second virial coefficients of the two models.
Although we have not computed the phase diagram for the
fluid studied by Wolters et al., we can anticipate its phase
behavior by comparing the second virial coefficient, B2, with
experiment, and also the Boyle temperature with Table I. This
comparison is made based upon a trimer model, referred to
as the MM-LJ model in this work, using the same shape
parameters of Wolters et al., L = 0.57σ, Θ = 91◦ and smaller
repulsive bead sizes, σr = 0.85σ, but with the potential
described in Sec. II of this work.17 Wolters et al. reported a
second virial coefficient of B2/σ

3
≈ −11, which corresponds

to a depletant concentration of φd ≈ 0.2. This value of B2/σ
3

in turn corresponds to a reduced temperature of kBT/ǫ

= 0.355 ± 0.005 for the MM-LJ model, where the method
to obtain the reported error is described in Appendix C. The
results in this study are consistent with the possibility that
the MM-LJ model forms only elongated clusters, as found in
the work of Wolters et al., because the Boyle temperature for
the MM-LJ model is kBTBoyle/ǫ = 0.735 ± 0.005. This value
of the Boyle temperature lies between models in Table I that
both formed elongated clusters, but the models transitioned
from forming spherical clusters at L = 0.75σ to not forming
spherical clusters at L = 0.4σ. One possible conjecture is that
tuning the trimer shape in experiments for increased repulsion
with respect to attraction (e.g., increased size of repulsive
beads, σr , and L) may lead to the formation of spherical
clusters.

V. CONCLUSION

The phase diagrams of trimer particles with one central,
attractive bead and two repulsive beads were computationally
mapped out as a function of the trimer shape. It has recently
been shown that it is possible to synthesize similar colloidal
trimer particles,15,17 and this computational study may guide
future experimental studies of different trimer geometries. The
trimer particles self-assembled into spherical clusters, elon-
gated clusters, and packed cylinders. The shape of the trimers,
and the state conditions, played a role in determining the type
of self-assembled structures that are formed. In addition, some
trimer geometries led to macroscopic fluid phase separation.
The transition from microscopic self-assembly to macroscopic
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fluid phase separation may be understood in terms of the
relative size of repulsion and attraction in the particle. In
special cases, both self-assembled structures and macroscopic
phase separation occurred simultaneously.

While the effect of the shape of the trimer on the phase
behavior is the emphasis of this study, future investigations
may utilize interaction potentials that model a particular
system more closely (e.g., shorter-ranged interactions for
patchy colloids). Note that the continuous potential in this
work was chosen to make the model amenable to molecular
dynamics simulations, which will be the subject of future
publications to study the kinetics of assembly.

The obvious case of L = 0.5σ was omitted from this study
for the following reasons. Although extensive simulations
were conducted for L = 0.5σ, the state conditions where
the fluid potentially exhibited phase separation and/or self-
assembly involved low temperatures. Our existing set of
Monte Carlo moves was not sufficient to sample these
conditions adequately. Proper sampling under these conditions
may require more sophisticated cluster trial moves (e.g.,
Refs. 40–42). Additional study of the cases near L/σ = 0.4
and 0.5 may be the subject of future publications.
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APPENDIX A: EXAMPLES OF DETERMINING
SELF-ASSEMBLY STRUCTURAL TRANSITIONS

In this appendix, examples of the structural transitions
from the spherical micellar fluid are provided for select state
points for L = σ, Θ = π/3. As described in Sec. III B, these
transitions include the CMC, the CMT, the spherical micelle to

FIG. 7. Grand canonical ensemble average of the number density of free
trimers and premicellar aggregates, ρfree with kBT /ǫ = 0.25 (black solid line)
and kBT /ǫ = 0.3 (red dashed line). The blue shaded region shows where ρfree

is within 75% of its maximum value. L =σ, Θ= π/3, and V = 729σ3.

FIG. 8. Pressure as a function of trimer density for kBT /ǫ = 0.25 with the
ideal pressure shown by the black dashed line and the fit to the second linear
regime shown by the red dotted line. L =σ, Θ= π/3, and V = 4096σ3.

elongated cluster transition, and the high density boundary of
the micellar fluid. The transition between a free trimer fluid and
micellar fluid is defined by the CMC. The CMC was obtained
both structurally and thermodynamically, as described in
Sec. III B. Figures 7 and 8 illustrate these different approaches.
In addition, there is a CMT, above which a trimer fluid exists
without micelles. This CMT is not a true critical point, but it
is a useful construct that suffers from some arbitrariness. As
demonstrated in Figure 9, micelles formed at kBT/ǫ = 0.275
due to the presence of a system-size dependent density of a
second peak in the macrostate distribution.32 But they did not
form at the higher temperature of kBT/ǫ = 0.3. Therefore,
the CMT, Tcm, is between these two temperatures and is
reported as kBTcm/ǫ = 0.2875 ± 0.0125 in Figure 5. There is
also a high density boundary for the micellar fluid, where
micelles deform to improve packing and eventually form
different structures (e.g., cylinders shown in Figures 2(g) and
2(h)). This high density boundary was defined approximately
as the density at which the concentration of free trimers
and premicellar aggregates is no longer constant. Finally, at
lower temperatures, there is a transition between spherical

FIG. 9. The probability to observe a number of trimers,Π for L =σ,Θ= π/3
with kBT /ǫ = 0.275, V = 729σ3 (black x), kBT /ǫ = 0.275, V = 512σ3 (red
circle), kBT /ǫ = 0.3, V = 729σ3 (black +), and kBT /ǫ = 0.3, V = 512σ3

(red square). When kBT /ǫ = 0.275 and µ/kBT = 3ln(σΛ)−5. Otherwise,
µ/kBT = 3ln(σΛ)−4.5. Λ is the thermal de Broglie wavelength. Probabil-
ity distributions are shifted by a constant for clarity.
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FIG. 10. Probability distribution of number of trimers in a cluster in par-
allel tempering simulations for L =σ, Θ= π/3, V = 729σ3, and kBT /ǫ

= 0.154,0.16,0.167.

FIG. 11. Grand canonical ensemble averaged constant volume heat capacity,
CV , in parallel tempering simulations for V = 729σ3, L =σ, Θ= π/3, and
N = 35,36,37,38,39.

micelles and elongated clusters. The structural definition of
this transition was the temperature at which the system had
an equal probability to form two micelles or one elongated
cluster. This is shown in Figure 10 as two spherical clusters
of 20 trimers in size combined at lower temperatures. The
thermodynamic definition of the micelle to elongated cluster
transition was the temperature at which there was a peak in
the constant volume heat capacity, shown in Figure 11. For
all cases, the thermodynamic and structural definition agrees
within the error bars. The determination of the value of the
spherical to elongated cluster transition temperature, and the
error bars, from two bracketing isotherms, are analogous to
the procedure for the CMT described above.

APPENDIX B: EXCLUDED VOLUME

Excluded volume, Vex/σ
3, was computed assuming hard

spheres of diameter σ.20,43,44 Thus, the excluded volume is
defined as the region of space that excludes a hard sphere
of diameter σ, assuming trimer sites are also hard spheres
of diameter σ. Note that, for this definition, the excluded
volume for the L = 0 case is Vex/σ

3 = 4π/3. This excluded
volume definition for L = 0 is not the same as the volume of
a single hard sphere. In practice, the excluded volume was

computed numerically by overlaying the trimer with a cubic
grid of Np = 109 points and a side length, V

1/3
cube

, equal to σ

plus the maximum intra-particle distance from a site to the
center-of-mass. By counting the number of grid points, no,
where hard spheres centered on that point overlap with the
trimer, Vex =

noVcube

Np
. By computing the excluded volume of

one hard sphere (e.g., the L = 0 case) and comparing to 4π/3,
the numerical error is expected to be in the order of 10−4.

APPENDIX C: SECOND VIRIAL COEFFICIENT
AND THE BOYLE TEMPERATURE

The second virial coefficient, B2(T), was calculated by
Monte Carlo integration,

B2(T) = −
1
2

∫
V

dr f (r) = −
V

2Ntrial

Ntrial
∑

i

f (ri), (C1)

f (r) = e−U (r)/kBT − 1, (C2)

where ri is the relative position and orientation of a second
trimer with respect to the first trimer and i = 1, . . . ,Ntrial

randomly chosen positions and orientations of a second trimer
with respect to the first. In practice, the cubic volume, V ,
was chosen such that V 1/3 is greater than the twice the
potential cutoff plus four times the maximum intra-particle
distance from a site to the center-of-mass. Convergence was
reached when |B2|/σblock < 10−2 orσblock < 10−2, whereσblock

is the standard deviation obtained from block averages of
size Ntrial = 106. The Boyle temperature, TBoyle, was found
by starting at kBT/ǫ = 0.15 and incrementing T by 0.01. The
reported kBTBoyle/ǫ in Table I was the average of the two
temperature increments nearest B2 = 0 and the reported error
was ±0.005 to span the entire temperature increment.
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