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Cubic colloids, sedimented on a surface and immersed in a solution of depletant molecules, were modeled
with a family of shapes which smoothly varies from squares to circles. Using Wang-Landau simulations with
expanded ensembles, we observe the formation of rhombic lattices, square lattices, hexagonal lattices and
a fluid phase. This systematic investigation includes locating transitions between all combinations of the
three lattice structures upon changing the shape, and transitions between the fluid and crystal upon changing
the depletant concentration. The rhombic lattice deforms smoothly between square-like and hexagonal-like
angles, depending on both the shape and the depletant concentration. Our results on the effect of the
depletant concentration, depletant size, and colloid shape to influence the stability of the fluid and the lattice
structures may help guide experimental studies with recently synthesized cubic colloids.
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I. INTRODUCTION

The effect of particle shape on self-assembly has cap-
tured the attention of mathematicians, physicists and
chemists1–4 for hundreds of years.5 Recent advances have
enabled the experimental synthesis of colloidal parti-
cles with unique shapes,6 with aspirations of ultimately
reaching biological complexity.7 In addition to shape
anisotropy, depletant molecules in solution also lead to
anisotropic, attractive interactions8 which promote spon-
taneous self-assembly and crystallization. Given a de-
scription of particle shape and interparticle interactions,
the ability to predict the self-assembled structures that
might form remains a challenge. Theory and simula-
tion of anisotropic particles play an important role as
a guide for understanding experiments and predicting
novel structures.4,9–11

While spheres and circles are among the most com-
monly modeled shapes due to their isotropy, cubes and
squares have been the subject of comparatively fewer
studies due to the difficulty in modeling shape anisotropy.
This difficulty has been circumvented in the study of par-
allel hard squares and cubes.12–14 Recently, cubic colloids
have been synthesized experimentally,15–19 and accord-
ingly, simulations have been performed on freely rotat-
ing cubes, squares or truncated polyhedra,20–28 and on
a family of shapes which smoothly varies between cubes
and spheres29–32 or squares and circles.33–35 In addition,
hard cubes under shear have also been studied with ex-
periments and simulation.36

While many of the previous studies considered only
hard particles, the focus of this simulation work is on
the effect of depletant molecules in solution. The ad-
dition of an attractive depletant interaction promotes
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self-assembly and crystallization at lower colloid con-
centrations than the previous packing studies of hard
particles with no depletant molecules. In Rossi et al.,
sedimented cubic colloids in a solution of depletant
molecules were observed to undergo a transition between
square and rhombic lattices, depending on the size of the
depletant.18 In contrast to hard particles with no deple-
tant, the transition demonstrated by Rossi et. al. is a
novel example of how interaction-dependent structures
may be augmented by depletant. In addition, cubic col-
loids confined to a surface were simulated with explicit
depletant molecules and shown to exhibit a square to
rhombic lattice transition.18 Because explicitly simulat-
ing the depletant molecules is computationally expen-
sive, there is no systematic computational study of many
different depletant interactions and colloidal shapes for
cubic colloids sedimented on a surface.

In this computational study, we investigated the self-
assembly and crystallization of a family of shapes which
smoothly varies between squares and circles, in a solu-
tion with depletant molecules, and for a range of de-
pletant concentrations and different depletant sizes. To
our knowledge, this is the first implicit depletant simu-
lation of cubic colloids sedimented on a surface. We find
that the family of shapes, which varies continuously from
squares to circles, form rhombic lattices, square lattices,
and hexagonal lattices in addition to a fluid phase, de-
pending on the shape, depletant concentration and deple-
tant size. Specialized simulation techniques are utilized
to identify transitions between fluids and the formation
of crystal lattices, and also transitions between all com-
binations of the three observed lattice types, in order
to construct pseudo phase diagrams for the most stable
structure for a variety of conditions.

This paper is organized as follows. The colloid model
is described in Section II. In Section III, we describe
the methods used to simulate the family of shapes from
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squares to circles. In Section IV, the results are provided
for the stability of the lattice structures over a wide range
of shapes, depletant concentrations, and different deple-
tant sizes. Finally, conclusions are provided in Section
V.

II. MODELS

Cubic colloids sedimented on a surface were modeled
as rounded squares. The roundness of the colloidal par-
ticle refers to the roundness of the corners or the amount
of curved surface, which can be described by the param-
eter d. The roundness, d, smoothly varies from a square,
where d = 0, to a circle, where d = D/2 (D is the di-
ameter). Geometrically, the shape of the colloidal par-
ticle is defined by all points inside or within a distance
d of an inner square of side length L, shown in Figure
1. The area of the rounded square, A, was held constant
for all shapes, such that A = L2 + 4Ld + πd2 = πD2/4,
where D is the diameter of a circle, which corresponds
to the largest amount of curved surface. The poten-
tial model for the interaction between rounded squares,
U = Uh +Udep +Uel, includes hard-particle steric inter-
actions, Uh, attractive depletant interaction, Udep, and
screened electrostatic repulsion, Uel, as described below.
The rounded squares were modeled as hard particles.

The interaction between two rounded squares i and j,
is defined by the center separation distance, r, and the
relative orientations of the two squares, θi, and θj . The
angles, θi and θj were defined by the angle between the
vector connecting the two centers of the squares, and
the vector pointing to a corner of the square i or j, as
shown in Figure 1. The angles θi and θj were subject to
periodicity of π/2, and some symmetry conditions. Thus,
given r, θi, and θj , the hard particle potential energy, Uh,
is given by

Uh(r, θi, θj) =

{

∞ r < rh(θi, θj)

0 r ≥ rh(θi, θj)
(1)

where rh(θi, θj) is the hard center separation distance at
contact, which is computed numerically as described in
Appendix B.
The rounded squares possess an attractive interaction,

Udep, due to the interaction with a solution of depletant
molecules with a given radius of gyration, Rg, and con-
centration, φ. While previous studies have modeled the
depletant molecules explicitly,18 the depletant molecules
in this work were treated implicitly by computing ex-
cluded areas. This approach is more computationally ef-
ficient than explicitly simulating the depletant molecules,
especially if one needs to explore large regions of phase
space or simulate non-spherical colloids. The excluded
area of the depletant is given by all points within a dis-
tance Rg from the surface of the rounded square, shown
in Figure 1. For two rounded squares separated by a
distance r with relative orientation (θi, θj) and excluded

Rgd

∆Aex

L

Aex

θi θj

D

FIG. 1: Two rounded squares with center separation
distance of r = L+ 2d+Rg, relative orientation of
Θi = Θj = π/4, depletant excluded area in red,

d/D = 0.2, and Rg/D = 0.04. D is the diameter of a
circle with the same area as the rounded square.

area overlap, ∆Aex, the attractive entropic interaction,
Udep is given by15,37

Udep(r, θi, θj) = −∆Aex(r, θi, θj)

πR2
g

φkBT (2)

where kB is the Boltzmann constant and T is the tem-
perature. The depletant concentration, φ, in Equation
2 was made dimensionless, and the combined quantity
φkBT was used as a single parameter to set the strength
of the entropic interaction. Note that many-body effects
arise for the implicit depletant interaction when the ex-
cluded area of more than two particles simultaneously
overlap,38 but these many-body terms are expected to
be small for Rg << D, which is the case in this work.
Alternative methods have been developed which incorpo-
rate many-body effects, including the derivation of an ef-
fective one-component Hamiltonian of the colloids39 and
parallel algorithms to treat the depletants implicitly.40

Quantitative estimates of the many-body contribution
for special cases are discussed in Section IV.
In addition to the steric and depletion interactions,

the cubic colloids also possess a screened electrostatic
repulsion. The screened electrostatic repulsion, Uel, was
approximated as

Uel(r, θi, θj) =
χ

r
e−κ[r−rh(θi,θj)] (3)

where χ and κ are parameters for the electrostatic in-
teraction. Note that the three-dimensional form of the
screened electrostatic, or Yukawa, potential was chosen
because the experimental system of interest is in 3D with
particles that are confined to a surface. The electro-
static potential depends on the anisotropic shape of the
cubes, the temperature, inverse Debye screening length,
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and the surface charge.41 The electrostatic interaction is
short-ranged, where typical values, taken from recent ex-
perimental work,19 of the zeta potential, −30mV , and
the inverse Debye length, 0.5nm−1, leads to an order of
magnitude estimate of κD = 103, which was used in this
work. The stability of the model is improved by including
electrostatic repulsion because the position of the mini-
mum is now offset from hard contact. Without this effect,
there is a discontinuous jump from steric interaction pre-
cisely at the minimum of the potential, which may lead to
poor numerical stability in the computer simulation algo-
rithms, and may lead to error in potential-function opti-
mizations (e.g., tabular potentials). The electrostatic in-
teraction also makes this model more amenable to molec-
ular dynamics simulations. According to estimates of
typical cubic colloidal systems,15 the parameter χ was
chosen to be small such that the value of the total poten-
tial energy minimum is near the value of Udep(rh). For
convenience, χ/D = φkBT in this work, such that the
total potential energy, U = Uh + Udep + Uel, may be
scaled by φkBT . The results are not expected to change
qualitatively if the electrostatic interaction is removed.
Quantitative changes may result from the slight change in
the depth of the potential well, but these differences may
be accounted for by matching the second virial coefficient
via extended corresponding states.42,43 Although the Uel

term is generally small, it is both a physically meaningful
quantity for comparison with experiments and improves
transferability of the model to molecular dynamics.
Figure 2 shows the pair-wise potential between two

rounded squares in depletant for three orientations. Note
that the contribution of the electrostatic interaction to
the total potential may be seen by the curvature of the
potential well in Figure 2, where a discontinuous jump
would occur in the absence of the screen electrostatics.
Figure 3 shows the minimum in the attractive potential
energy at the contact separation distance, rh, as a func-
tion of the two relative orientations for a series of values
of roundness, d.

III. METHODS

Sedimented cubic colloids with depletant interactions
were simulated using Wang-Landau (WL) Monte Carlo
simulations, which compute the free energy and potential
energy as a function of an order parameter of interest, as
well as provides detailed structural information, in a sin-
gle simulation.44 In this work, the following two order pa-
rameters were investigated: the depletant concentration,
φ, and the shape, d/D. Expanded ensembles45,46 were
required for these order parameters. In order to make
the simulations computationally tractable, the potential
between rounded squares was tabulated, as described in
Appendix B. Specialized Monte Carlo algorithms were
employed, in order to implement expanded ensembles
and improve sampling of collective motion, as described
in Section IIIA. The WL simulations are described in
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FIG. 2: The potential energy between two rounded
squares in depletant for Rg/D = 0.04 and d = 0 as a
function of distance between centers of the squares for

the following orientations, depicted by the black
squares: (solid black line) θi = θj = π/4 (dashed black

line) θi = π/4, θj = 0 (red line) θi = θj = 0.

more detail in Section III B. Finally, the algorithm to
define the dominant crystal lattice structure is described
in Section III C

A. Monte Carlo Trials

The following Monte Carlo trials were employed.
Translations and rotations of particles were attempted
with equal probability. For shape expanded ensemble
(SEE) simulations, the roundness parameter of all parti-
cles was attempted to be increased or decreased, with 50
% probability, by a fixed increment, d → d±δd, subject to
Metropolis acceptance criteria. For depletant concentra-
tion expanded ensemble (DEE) simulations, depletant-
concentration moves consisted of increasing or decreasing
φ by a fixed amount, ±δφ, subject to Metropolis accep-
tance criteria.
Collective trial moves were also implemented to facili-

tate convergence in systems with short-ranged attractive
interactions that self-assemble.18,47 This included rigid-
body translations and rotations of clusters, where clus-
ters were defined as all particles with excluded area over-
lap, rh(θi, θj) < r < rc(θi, θj), with at least one other
particle in the cluster, obtained via recursive flood-fill
algorithm. To obey detailed balance, cluster moves re-
sulting in a particle joining a different cluster were re-
jected. The geometric cluster algorithm (GCA) was also
used.18,48,49 The GCA is a rejection-free algorithm that
collectively moves particles, and results in better sam-
pling of clusters of particles than traditional single parti-
cle moves. The algorithm proceeds as follows. A particle
and a pivot point in space are randomly selected, and the
particle is reflected about the pivot. All other particles
which interact with the pivoted particle, in both the old
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FIG. 3: The attractive entropic interaction, Udep,
between two rounded squares due to depletant

molecules of size Rg/D = 0.04 at contact, rh(θi, θj), for
a range of values of roundness, d. Particle faces are in
contact at the center of the figure (θi = θj = π/4), while

particle corners are at contact at the corners of the
figure (θi and θj are 0 or π/2).

and newly pivoted positions, are then attempted to be
pivoted with a probability related to the pair interaction
energy between the two particles. Each attempted pivot
was carried out recursively until all the interacting par-
ticles were attempted to be pivoted. To avoid inefficient
moves involving most of the particles in the system, the
pivot point was confined to a cubic box centered on the

TABLE I: Monte Carlo trials and relative weights for
the probability of selection.

trial weight
single-particle translation or rotation 1
cluster translation or rotation 1/5Nmax

geometric cluster algorithm 1/Nmax

shape change (SEE only) 1/Nmax

domain tilt (fluctuating box only) 1/Nmax

depletant concentration change (DEE only) 1/100

first randomly selected particle. The size of this bound-
ing cubic box was tuned via 5 % changes every 106 trials,
in order to obtain an average target number of particles
involved in a pivot, set to Nmax/5, where Nmax is the
maximum number of particles in the simulation. Note
that while the rigid cluster moves could not create or de-
stroy clusters due to detailed balance, the GCA does not
suffer from this limitation.
Simulations with fluctuating periodic boundary condi-

tions were performed in order to avoid bias imposed by
the geometry of the simulation box on the periodicity
of crystallized particles.50 In practice, the simulation cell
was defined by two vectors. One vector lies parallel to
the x-axis, and will be referred to as v1, while the other
vector is referred to as v2. The value of the domain tilt
is the projection of v2 on v1 (i.e., zero tilt when v1 and
v2 are perpendicular). The size of the domain does not
change with changing tilt, such that v1 is constant, and
the projection of v2 along the y-axis is constant. The
absolute value of the domain tilt was constrained to not
exceed 75 % of the length of v1. In the domain tilt trial
move, the value of the tilt was attempted to be randomly
increased or decreased, with the center of mass of the
particles subject to the same affine transformation as the
domain, subject to Metropolis acceptance criteria. Note
that for simulations with fluctuating periodic boundary
conditions, the geometric cluster algorithm was not used.
The weights for the probability of selection of each trial

type are provided in Table I. For each Monte Carlo trial
that involved movement of particles or domain tilt, the
parameter associated with the maximum change was op-
timized, via a 5 % change every 106 trials, to yield ap-
proximately 25 % acceptance of the trial move.

B. Wang-Landau

Wang-Landau (WL) sampling is a flat-histogram
method used to obtain the probability distribution func-
tion of some specified order parameter. Other useful
quantities that can be collected during the simulation
include the potential energy and structural information.
In order to estimate statistical error, all simulations were
conducted with 12 identical, independent replicas with
different random number seeds. The Wang-Landau up-
date factor was initially set to unity, and was multiplied
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by 0.5 whenever the flatness criteria of 80 % was met (see
Appendix A of Ref.51 for implementation details of WL).
Averaged quantities of interest, such as the potential en-
ergy, were not stored until the update factor was smaller
than 10−6. Simulations were terminated when the up-
date factor was smaller than 5 × 10−11. For both DEE
and SEE ensembles, the size of the macrostate bin was
equal to the trial step change (i.e., δφ or δd, respectively).
Configurations were stored every 105 trials for analysis.
Unless otherwise specified, the periodic boundaries of the
simulation domain was a square of side length l.
In order to determine the most stable structure for a

given φ, d, Rg and particle number density, ρ, depletant
concentration expanded ensemble (DEE)WL simulations
were performed. The DEE is analogous to the tempera-
ture expanded ensemble,45,46 and facilitates sampling of
crystallite formation and destruction. The DEEWL sim-
ulations were conducted for a range of φ in the interval
[φmin, φmax], using increments of δφ = 0.02 for a con-
stant number of particles, N , and constant roundness, d.
For both Rg/D = 0.04 and 0.08, a series of DEE simula-
tions was conducted for d/D in the range [0, 0.5] in inter-
vals of 0.025, and with N = 72 and l/D = 12, such that
ρD2 = ND2/l2 = 0.5. For Rg/D = 0.04, φmin = 0.3
and φmax = 1.3. For Rg/D = 0.08, φmin = 0.5 and
φmax = 2. In order to increase resolution in a particular
region of parameter space for Rg/D = 0.04, additional
simulations were conducted in the φ range [0.355, 0.37]
in intervals of 0.005. Additional simulations were also
conducted to investigate the effect of system size, l, and
the effect of the concentration of rounded squares, ρ, for
Rg/D = 0.04 and d/D = 0, 0.35, 0.375 and 0.5. Simula-
tions were conducted for studying systems size effects for
the same concentration, ρD2 = 0.5, with N = 128 and
l/D = 16. Simulations for studying concentration effects
were conducted for N = 100, l/D = 12, with ρD2 ≈ 0.7.
Simulations with a fluctuating box were performed for d
in the range [0, 0.5] in intervals of 0.1, and with N = 72,
l/D = 12, and Rg/D = 0.04 and 0.08.
Shape expanded ensemble (SEE) WL simulations were

conducted for a range of d/D values in the interval
[0.325, 0.4] at fixed number of particles, N = 72, and
constant depletant concentration, φ, with δd/D = 0.001,
Rg/D = 0.04 and l/D = 12. The SEE WL simulations
were conducted for both φ = 1.15 and 1.2. In addition,
another set of SEE WL simulations were conducted to
compute radial distribution functions for φ in the range
[0, 0.5] in intervals of 0.1, with a range of d/D values in
the interval [0, 0.5] for Rg/D = 0.04, N = 72, l/D = 12
and δd/D = 0.05.

C. Crystal Structure Analysis

The rounded squares formed clusters of square, rhom-
bic and hexagonal lattices at sufficiently high depletant
concentrations. The crystallite lattices were identified
by analyzing the structures observed in the simulations.

Transitions between different structures were also iden-
tified using thermodynamic definitions, and they were
consistent with the structural metrics. The focus of
this study was on moderate concentrations of rounded
squares, where the crystal structures observed in the sim-
ulations are imperfect crystal nuclei, similar to those ob-
served in experiment.15,18 In this work, crystal structures
were identified based on the distribution of the number of
nearest neighbors and the distribution of angles formed
by them.

Nearest neighbors were defined as pairs of particles
with overlapping depletant-excluded areas. For the en-
semble of configurations of particles at a given state
point, a histogram of the number of neighbors for every
particle in the system was obtained. The most common
number of neighbors for a given state point, nnn, was
then defined as the maximum in the histogram. Note
that the number of nearest neighbors, nnn, for perfect
square lattices depends on the depletant size, Rg and the

roundness of the particle, d. If d/D < Rg/(
√

(2) − 1),
then nnn = 8 for perfect square lattices; otherwise,
nnn = 4. For both perfect hexagonal and rhombic crys-
tal structures, nnn = 6. Therefore, if nnn ≤ 3, then the
state point was assigned as a fluid. But if nnn > 3, infor-
mation about the nearest neighbor angle histogram was
required to distinguish between the lattices.

The nearest neighbor angle histogram was constructed
using all particles in the ensemble of configurations for a
given state point. For each particle, i, the bond angles
were computed for pairs of nearest neighbors, j and k,
where the angle was defined as ∠jik, and the sum of
all bond angles for a particle was 2π. The histogram of
all nearest neighbor angles for a given state point was
then computed with a bin size of 0.005 radians. The
global maximum in the angle histogram was identified as
θnn. For a perfect hexagonal lattice, θnn = π/3. For a
perfect square lattice, θnn = π/4 or π/2, depending on
d and Rg, as noted above. Finally, the global maximum
for a rhombic lattice falls in the range π/4 < θnn < π/2.
The rhombic lattice also possesses a local maximum, θnn2
subject to the condition 2θnn+θnn2 = π or 2θnn2+θnn =
π.

The crystal structure for a given state point was then
identified based on the most common number of near-
est neighbors, nnn, and the global maximum in nearest
neighbor angle histogram, θnn. For the rhombic lattice,
the local maximum, θnn2 6= θnn, was also considered. A
state point was assigned as a fluid if nnn <= 3. Oth-
erwise, if nnn > 3 and θnn = π/3, the state point was
assigned as a hexagonal lattice. A state point was deter-
mined to be a square lattice if nnn > 3 and θnn = π/4
or π/2. Otherwise, if none of the above criteria were
met, the state point was assigned as a rhombic lattice if
π/4 < θnn < π/2 and 2θnn+θnn2 = π or 2θnn2+θnn = π,
where the histogram intensity for θnn2 must be within 10
% of the global maximum. The angle comparisons were
subject to a tolerance of 0.015 radians, to account for
finite bin sizes in the angle distributions and for statis-
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tical error. The tolerance was increased by a factor of
3 for the rhombic angle comparison which involved the
sum of 3 angular terms. Finally, the tolerance of the an-
gle comparison for the hexagonal lattice was set to 0.05
radians, due to the difficulty in identifying the transition
between hexagonal and rhombic structures, which stems
from the spread in the angle histogram (See Appendix
C). In order to establish a measure of uncertainty for
the identification of crystal lattices, 12 independent sim-
ulations were performed. For a given state point, if the
dominant crystal lattice for all 12 independent simula-
tions did not match, or if a crystal lattice did not match
any of the above criteria, then the state point was of
indeterminate structure.
Boundaries between structures were also identified

thermodynamically, based on the fluctuations in the po-
tential energy. Fluctuations in potential energy are re-
lated to heat capacity, and structural transitions have
been identified by peaks in the heat capacity.52 There-
fore, the maximal fluctuations in the potential energy
were identified as structural transitions, and are shown
to be consistent with the structural metrics described
above. Error bars for boundaries were obtained from
12 independent simulations, and were dependent on the
discretization of the state points. This transition defini-
tion was predominantly utilized for fluid to crystal tran-
sitions. Structural identification based on bond orien-
tation parameters53 were also performed (Appendix C),
and these results were consistent with those based on nnn

and θnn.

IV. RESULTS

Rounded squares in depletant were simulated using
Wang-Landau (WL) sampling in two different ensembles
to study the stability of crystal and fluid states as a func-
tion of roundness, d/D, depletant concentration, φ and
particle concentration, ρD2. In the absence of depletant,
the fluid state is favored in the moderate density range
of interest in this study. When depletant is added to
the solution, rounded squares self-assemble into square,
hexagonal and rhombic lattices, as shown in Figure 4.
In order to approximate the magnitude of the ne-

glected many-body effects, we consider the largest con-
ceivable contribution from the many-body interaction.
This worst-case scenario corresponds to the case of a
perfect square lattice where d = 0. In this situation,
the corners of four particles come together to include
three- and four-body interactions. The pair-wise ex-
cluded area overlap, ∆Ap, is an overestimation of the
true excluded area overlap, ∆A. In the square lattice
case with perfect squares, d = 0, the percent difference,
∆Ap−∆A

∆A = 4+2π
3π+8L/Rg

is 5% and 10% for Rg/D = 0.04

and 0.08, respectively. In addition, the many-body con-
tribution to the potential energy in the square lattice
vanishes as the roundness, d, increases to a value of
d = Rg/(

√
2 − 1) or roughly d/D = 0.1 and 0.2 for

(a)

(b)

(c)

FIG. 4: Example lattices observed in the simulations
include the following: square lattice for d/D = 0.05,
φ = 1.3 and Rg/D = 0.04 (a), rhombic lattice, Λ1, for

d/D = 0.2, φ = 1.8 and Rg/D = 0.08 (b) and hexagonal
lattice for d/D = 0.4, φ = 1.3 and Rg/D = 0.04 (c).

l/D = 12 and ρD2 = 0.5.

Rg/D = 0.04 and 0.08, respectively. For a perfect hexag-
onal lattice, many-body effects do not occur for values of
the depletant size of Rg/D ≤ 1/

√
3− 1/2 ≈ 0.08.

In Figure 5, we plot the radial distribution functions54

for particles of different values of roundness at the same
number density when no depletant is present. The curves
approximately collapse and possess similar hydration
shell distances. Note that this collapse depends upon
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FIG. 5: Radial distribution functions with respect to
center-of-mass separation distance, r, from a SEE
simulation with no depletant (φ = 0), l/D = 12,

ρD2 = 0.5, Rg/D = 0.04 and the following values of
roundness: d = 0 (light blue triangle), d/D = 0.1
(magenta circle), d/D = 0.2 (dark blue square),
d/D = 0.3 (green star), d/D = 0.4 (red x) and

d/D = 0.5 (black +). Lines are guides to the eye.
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FIG. 6: Radial distribution functions with respect to
center-of-mass separation distance, r, for squares

(d = 0), l/D = 12, ρD2 = 0.5, Rg/D = 0.04 and the
following depletant concentrations: φ = 0 (black +),

φ = 0.1 (red x), φ = 0.2 (green star), φ = 0.3 (dark blue
square), φ = 0.4 (magenta circle) and φ = 0.5 (light

blue triangle). Lines are guides to the eye.

the chosen distance scale, D in this work. An alternative
scaling would be the radius of the minimal circle needed
to enclose the rounded square.19 When the depletant con-
centration is increased, the particles crystallize. For ex-
ample, in Figure 6, we show that the radial distribution
function for a square (d = 0) becomes more ordered when
the depletant concentration, φ, increases.
The transition from the fluid phase to a crystal nu-

cleus may be located thermodynamically by examining
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FIG. 7: Fluctuations in the potential energy as a
function of depletant concentration, φ, with l/D = 12,
ρD2 = 0.5, Rg/D = 0.04 and the following values of
roundness: d = 0 (light blue triangle), d/D = 0.1
(magenta circle), d/D = 0.2 (dark blue square),
d/D = 0.3 (green star), d/D = 0.4 (red x) and

d/D = 0.5 (black +). The inset shows the potential
energy per particle. Lines are guides to the eye. Error

bars are standard deviations.

the potential energy as a function of depletant concen-
tration, which is shown in Figure 7. At low depletant
concentrations, the rounded squares in the fluid phase
infrequently have overlapping excluded areas, and the
potential energy is relatively small. But as crystal nu-
clei form when the depletant concentration increases, the
potential energy decreases dramatically. As discussed in
Section III C, the fluctuation in the potential energy with
respect to φ is analogous to the heat capacity. Therefore,
the transition between fluid and crystal was defined as
the maximum fluctuation in the potential energy, corre-
sponding to a peak in the heat capacity. We find that
the depletion concentration at which the transition oc-
curs changes non-monotonically as d increases. In addi-
tion, the potential energy changes non-monotonically as
a function of d, except for the higher values of φ that were
studied (e.g., φ ≈ 1.3), where a plateau occurs in the re-
gion of the pseudo phase diagram where the hexagonal
lattice is most stable.

Crystal lattices were also identified by structural met-
rics (See Section III C). In Figure 8, we show angle dis-
tributions for the rhombic and square lattice. For the
d/D = 0.1 case, the peaks at 48.5◦ and 83◦ correspond
to a rhombic lattice, while the peaks at 45◦ and 90◦ corre-
spond to a square lattice. Because the peak correspond-
ing to the rhombic lattice is the global maximum, the
rhombic lattice is taken to be the dominant phase under
these conditions. Note that both peaks at 45◦ and 90◦

were observed for the square lattice because d/D = 0.1

is near d =
Rg√
2−1

, where the square lattice values of nnn

change from 8 to 4. When d/D was increased to 0.125,
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l/D = 12, ρD2 = 0.5 and the following values of

roundness: d/D = 0.1 (black +) and d/D = 0.125 (red
x). Lines are guides to the eye.

the peak at 90◦ becomes the global maximum and the
square lattice is stable. Other examples of transitions as
a function of shape between square and hexagonal lat-
tices, and rhombic and hexagonal lattices, are provided
in Appendix C.
The most dominant lattice structure for a range of val-

ues of roundness, d, and depletant concentrations, φ, are
shown in Figure 9. The fluid-to-crystal transition line
is a non-monotonic function of d. This is likely due to
frustration between the hexagonal and square lattices at
intermediate d. The rhombic lattice was rarely observed
to be the dominant lattice structure for Rg/D = 0.04 in
the range of φ shown. However, under conditions where
the rhombic lattice was observed to be stable (φ = 1.28
and 1.3 for d/D = 0.1 and Rg/D = 0.04), the equilibrium
angles of the lattice were found to be 48.5◦ and 83◦, which
are close to those of the square lattice. Thus, the rhombic
lattice in this case is only subtly different from the square
lattice, which is reflected by the indeterminate regions in
the phase diagram shown as the light orange color in
Figure 9. Nonetheless, it is interesting to see that for
φ >= 1.28, there exists an intervening region of rhombic
stability within a region of square stability. That is, the
stable lattice changes from square to rhombic and then
back to square as the roundness increases in this range
of depletant concentration. While this is non-intuitive,
the stability of the rhombic lattice in this small region
of the φ-d diagram was indeed confirmed by twelve inde-
pendent simulations at these state points. While it might
be argued that this unusual behavior is a consequence of
neglecting many-body effects in our model, we point out
that this is taking place in a region of the phase diagram
where many-body effects are minimal. Also note that the
transition from a square lattice to a rhombic lattice and
then to a square lattice as d increased was accompanied
by a monotonic change in potential energy, or depletant
excluded area overlap, in contrast to the square to hexag-
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FIG. 9: Dominant lattice structures for a given
roundness, d, depletant concentration, φ, l/D = 12,

ρD2 = 0.5 and Rg/D = 0.04 include the following: fluid
(light red), square lattice (”sq”, light blue), hexagonal
lattice (”hex”, dark blue), rhombic lattice (”Λ1”, light
green) and indeterminate (light orange). The colors

represent the results from the crystal structure
identification algorithm described in Section III C, with
discretization, shown by small black points, based on a
series of independent DEE simulations. The transition
definition based on potential energy fluctuations is

shown with symbols and error bars (see Section III C for
definition of error bars) for the following cases:

l/D = 12, ρD2 = 0.5 (black x), l/D = 16, ρD2 = 0.5
(white star) l/D = 12, ρD2 = 0.7 (green open square)

and fluctuating box simulations with l/D = 12,
ρD2 = 0.5 (red solid square). The theta solvent
condition, B22(φθ) = 0, is shown by the yellow +

symbol.

onal transition with increasing d, which was accompanied
by a non-monotonic change in potential energy (see Fig-
ure 7). Further investigation using a more sophisticated
method as presented in Ref. 40 may shed light on this in-
teresting behavior. As noted, experimental investigation
might be difficult due to the subtle structural difference
between the rhombic and square lattice in this case. The
effects of both system size, l and particle concentration,
ρ were also investigated. For cases where l was increased
at fixed ρ, the fluid to crystal transitions were within sta-
tistical error, as shown in Figure 9. The fluid-to-crystal
transition was located at lower φ when ρ was increased
from ρD2 = 0.5 to 0.7, which is consistent with physical
intuition. In addition, the fluctuating box simulation re-
sults are consistent with the fixed box simulations, which
verifies that there is no bias in the crystal formation due
to constraints on the shape of the simulation domain.
The theta solvent condition, defined as the depletant

concentration at which the second osmotic virial coeffi-
cient vanishes, B22(φθ) = 0, is shown in Figure 9. Note
that for φ < φθ, B22(φ) > 0. We find that φθ in-
creases with increasing d, which implies that the ratio
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FIG. 10: Dominate lattice structures, with the same
colors and symbols as described in Figure 9, but with

Rg/D = 0.08.

of repulsive to attractive interactions increase with d, as
evidenced by Figure 3. The second osmotic virial coef-
ficient has been used as a predictor for crystallization,55

yet in some cases for non-spherical particles, crystal lat-
tices form when φ < φθ and B22(φ) > 0.
The most dominant lattice structures for the larger

depletant size, Rg/D = 0.08 are shown in Figure 10.
With the larger depletant, the stable region of φ-d space
for the rhombic lattice separates the square and hexag-
onal lattices, and the rhombic lattice region borders the
fluid phase. As shown in Figure 11, the rhombic lattice
smoothly varies between square-like (i.e., θnn ≈ π/4) and
hexagonal-like (i.e., θnn ≈ π/3), depending on the round-
ness, d. The rhombic lattice angle, θnn also depends on
the depletant concentration, φ, where θnn changes by
about 5◦ over the range of φ shown in Figure 11 for the
d/D = 0.15 case. The boundaries of the rhombic lattice
region possess the most uncertainty, as also observed in
the Rg/D = 0.04 case, which is due to the difficulty in
identifying a rhombic lattice with angles similar to those
of the square or hexagonal lattices.
Shape expanded ensemble simulations employing

Wang-Landau sampling were also performed to investi-
gate the structural transitions that accompany changes in
particle shape, at higher resolution than a series of deple-
tant concentration expanded ensembles. Figure 12 shows
the fluctuations in the potential energy as a function of
roundness values ranging from the square to hexagonal
lattice. As discussed in Section III C, the transition is de-
fined by the maxima in the fluctuations in the potential
energy. A shoulder in the fluctuations of the potential
energy in Figure 12 vanishes at higher depletant concen-
trations. This shoulder suggests the proximity of a sec-
ond thermodynamic transition, such as a transition from
a square lattice to a fluid to a hexagonal lattice as the
roundness increases. In addition, structural metrics were
computed and found to be consistent.
The dominant lattice structures in the immediate
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FIG. 11: The average nearest neighbor angle, θnn, for
rhombic crystal nuclei with Rg/D = 0.08, ρD2 = 0.5

and l/D = 12. The black shaded regions are
non-rhombic lattices or fluid.
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FIG. 12: Fluctuations in the potential energy near the
triple point for l/D = 12, ρD2 = 0.5 and Rg/D = 0.04
from shape expanded ensemble (SEE) simulations with
φ = 1.15 (black +) and φ = 1.2 (red x). Error bars are
the standard deviations of the averages from twelve

independent simulations.

vicinity of the triple point for depletant size Rg/D = 0.04
are shown in 13. A combination of DEE and SEE WL
simulations were utilized, which sample well the lattice-
fluid transition in φ and the lattice-lattice transition in
d, respectively. As shown in Figure 13, the potential en-
ergy based and structural based transition definitions are
consistent.

V. CONCLUSION

Wang-Landau simulations with specialized Monte
Carlo moves were used to construct pseudo phase dia-
grams for a family of shapes that smoothly varies from
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squares to circles. The implicit depletant model allowed
for a systematic investigation of the stability of crystal-
lites and the fluid state as a function of the depletant
concentration and depletant size. For example, a square
lattice was observed to change to a rhombic lattice upon
increasing the size of the depletant. In addition, the de-
pletant concentration at which there is a transition from
a crystallite to a fluid state changes non-monotonically
with shape. Transitions between rhombic, square, and
hexagonal lattices were also observed upon changing the
shape. These results may help guide experiments with
the recently synthesized cubic colloids in a solution of
depletant molecules.15,18

Care must be taken in comparing the 2D model sys-
tem to the 3D experimental cubic colloids sedimented
on a surface. In particular, the excluded volume over-
lap in 3D is different from the excluded area overlap in
2D. Quantitative comparison between our results and the
experimental cubic colloids would require a correction
for this difference. In order to improve comparison with
experiment in future work, the three-dimensional shape
may be utilized to compute the excluded volume over-
lap between particles. Assuming that the colloids do not
rotate out-of-plane with the surface, and the colloids do
not stack in the direction perpendicular to the surface,
then the excluded volume overlap of fully sedimented 3D
particles may be described with a 2D table. Otherwise,
the dimension of the lookup tables would be significantly
increased.
Future work may also include a more systematic study

of the concentration of the colloidal particles, and more

depletant sizes. In this work, the focus was on moder-
ate concentrations, where most results were for a fixed
concentration of ρD2 = 0.5. The effect of concentration
may be investigated with grand canonical ensemble sim-
ulations, and depletant size may be chosen as the order
parameter in an expanded ensemble simulation. Future
work may include bulk simulation of the crystal lattices
with fluctuating periodic boundary conditions.50 Finally,
future studies may include the many-body terms in the
depletant interaction.38–40
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Appendix A: Second Osmotic Virial Coefficient

The second osmotic virial coefficient, B22, was calcu-
lated by Monte Carlo integration.

B22(φkBT ) = − A

2n

Ntrial
∑

i

f(ri;φkBT ), (A1)

f(r;φkBT ) = e−U(r;φkBT )/kBT − 1, (A2)

where ri is the relative position and orientation of a
second particle with respect to the first particle, and
i = 1, ..., Ntrial randomly chosen positions and orienta-
tions of a second particle with respect to the first, and A
is the area which encompasses all relative positions with
non-zero interaction energy. In practice, A was chosen
such that A1/2 is greater than 2rcut = 4(d+Rg+

√
2L/2).

Convergence was reached when |B22|/σblock < 10−2 or
σblock < 10−2, where σblock is the standard deviation ob-
tained from a series of block averages of size Ntrial = 109.

Appendix B: Tabular Potential

Precomputing the potential greatly sped up the sim-
ulations. Although the potential may be stored in one
large table, the efficiency was improved with an addi-
tional, smaller table. The smaller table was used to de-
termine if two particles overlapped, r < rh, or if two
particles were too far to interact, r > rc, where rc is the
minimum value of r for which U(r; d, θi, θj) = 0. This ap-
proach reduced the frequency that the larger table was
required, and also allowed rescaling of the separation dis-
tance in order to improve resolution.
For a given orientation, θi and θj , between two par-

ticles of roundness d, we first tabulated the hard con-
tact distance, rh(d, θi, θj), and the cut-off distance,
rc(d, θi, θj). Once rh and rc were obtained, the excluded
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area overlap need only be computed if rh ≤ r ≤ rc. For
convenience, the scaled distance between these two lim-
its was defined as z(r) = r−rh

rc−rh
, such that z ∈ [0, 1] for

rh ≤ r ≤ rc. The attractive potential, Udep(d, θi, θj , z),
was then tabulated for a range of discrete z values. This
procedure was repeated for many different θi, θj and d.
In tabulating θi and θj , one may make use of the periodic-
ity of π/2 and the symmetry operations (θi, θj) = (θj , θi)
and (θi, θj) = (−θi,−θj), such that θi ∈ [0, π/4] and θj ∈
[−π/4, π/4]. The Python library Shapely56 was used to
compute the overlap areas, and rh and rc were computed
by minimization with the Brent method using a toler-
ance of 10−8. Unless specified otherwise, 101 elements
were used for d, 76 elements were used for θi, 151 were
used for θj , and 51 were used for z. Below, we show that
a sufficient number of table elements was indeed chosen.
Also note that this number of table elements was used
to generate the pixels for Figure 3. The tables were bi-,
tri-, or quadri-linearly interpolated.
To efficiently determine the interaction between two

particles during a simulation, one may identify cases
where no table interpolation is necessary, or cases where
only an interpolation of the small table was required in-
stead of the large table. Regardless of particle orien-
tations, the particles overlapped if the separation dis-
tance, r < L/2 + d. In addition, there is no interaction

if r > rcut = 2(d + Rg +
√
2L/2). After checking for

these conditions, the orientation-dependent overlap dis-
tance, rh and cut-off distance, rc was interpolated from
the smaller table. Thus, an interpolation of the full ta-
ble was only required if rh < r < rc. If the roundness
of the square, d, coincided with a table element, then
no interpolation in d was performed. The efficiency of
this approach was confirmed by profiling the simulation
program to find that more computer time was spent in-
terpolating the small table rather than the large table,
for moderate densities with a cell list and neighbor list.
The convergence of the tabular potential was tested

using the second osmotic virial coefficient, B22. The B22

was chosen for three reasons. First, the convergence of
the B22 is a convenient test of the potential because it is a
measure of the spatially- and orientationally-dependent
integral average of the pair-wise potential. Second, if
the B22 of the model is well-defined, then extended
corresponding-states may be applied to short-range mod-
els to directly compare phase behavior between different
models and experiment.42,43,57 Third, comparison of the
B22 for many different tabular potentials is more compu-
tationally efficient than comparing between a large set of
WL simulations.
The size of the table is determined by the following

four dimensions: the number of each of the two rela-
tive orientations, nθ, the number of scaled separation
distances, nz, and the number of values of roundness,
nd. See Section III for more details on the definition of
the tabular potential. The values of nθ, nz and nd for
convergence of the B22 were obtained sequentially as fol-
lows. To begin, the convergence of nθ was tested for the
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FIG. 14: The second osmotic virial coefficient as a
function of the number of orientations in the table, nθ,
for d = 0, φ = 0.5 and nz = 51. Error bars are standard

deviations from block averages.

most anisotropic case, d = 0, and relatively high deple-
tant concentration, φ = 0.5. During this convergence
test for nθ, nz = 51, which was assumed to be larger
than necessary, and later verified. As shown in Figure
14, the B22 was sufficiently converged at nθ = 151 (or
nθ = 76 after utilizing symmetry for one angle). Next,
the convergence of nz was tested for d = 0, φ = 0.5 and
nθ = 151. As shown in Figure 15, the B22 was sufficiently
converged at nz = 26. Finally, the convergence of nd was
tested for d/D = 0.001, φ = 0.5, nθ = 151 and nz = 26.
The roundness d/D = 0.001 was selected near d = 0,
such that d/D was not too small to resolve interpolation
differences within statistical error. For d/D = 0.001, the
largest meaningful value of nd was 501, because nd = 501
possessed a table element precisely at d/D = 0.001. The
value of d/D = 0.001 was also chosen to not be too big,
such that convergence occurred sufficiently far away the
largest possible value of nd. As shown in Figure 16, the
B22 was sufficiently converged at nd = 101.

Appendix C: Identifying Crystals by Nearest Neighbor Angle

Histograms and a Bond Orientational Order Parameter

In this appendix, examples of structural identification
of square, rhombic and hexagonal lattices are provided.
As described in Section III C, the lattices were identi-
fied based on the histogram of angles formed by pairs
of nearest neighbors of particles. A transition between a
square and hexagonal lattice is observed in Figure 17. For
d/D = 0.35, the global maxima in the angle distribution
is located at 90◦, which corresponds to a square lattice.
Note that there is also a minority population of rhombic
lattice at 55◦ and 62.5◦. When the roundness is increased
to d/D = 0.375, the square lattice peak is replaced by a
peak at 60◦, corresponding to a hexagonal lattice. Note
that the global maxima is located at 62.5◦. This is likely
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table, nd, for d/D = 0.001, φ = 0.5, nz = 26 and
nθ = 151. Error bars are standard deviations from

block averages.

due to a combination of a minority population of rhom-
bic lattice, as observed at d/D = 0.35, and the spread
in the angle distribution for the majority population of
hexagonal lattice at 60◦. The angle tolerance for hexag-
onal lattices accounted for the spread in the distribution
for the crystal identification algorithm described in Sec-
tion III C. Otherwise, with a global maxima at 62.5◦,
the identification algorithm would assign the histogram
for d/D = 0.375 as a rhombic lattice.
Figure 18 shows the probability distributions of the

nearest neighbor bond angles, θnn, for a variety of par-
ticle shapes at high depletant concentration. For low
values of d, the peak at 45◦ denotes that the square lat-
tice is most stable. As d increases, the rhombic lattice
becomes dominant, and is finally replaced by the hexag-
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FIG. 18: Angle histograms for φ = 2, Rg/D = 0.08,
l/D = 12, ρD2 = 0.5. The values of roundness, d/D,
are in the range of [0.05, 0.45] in intervals of 0.05, with

an additional value of d/D = 0.325.

onal lattice. While the d/D = 0.3 case is clearly rhom-
bic, and the d/D = 0.35 case is clearly hexagonal, the
d/D = 0.325 case is near the boundary, where it is dif-
ficult to distinguish a hexagonal lattice from a rhombic
lattice with angles near 60◦.
A bond orientational order parameter, Ql,

53,58,59 was
computed as an alternative to the angle histograms de-
scribed above. Ql is given by

Ql =
4π

2l + 1

m=l
∑

m=−l

|〈Qlm(r̂ij)〉|2 (C1)

where 〈...〉 denotes an average over all nearest neighbors,
r̂ij is the unit vector connecting nearest neighbors, near-
est neighbors were defined by a center to center separa-
tion distance less than 1.1D, and Qlm are the spherical
harmonics. The average bond orientational order param-
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The white symbols and error bars are the same
thermodynamically-defined transition shown in Figure
10. The labels on the color bar are also the same as

described in Figure 10.

eter, Q6, for l = 6, is shown in Figure 19 for many state
points, and is consistent with Figure 10.
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