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Theories of small systems play an important role in the fundamental understanding of finite size effects in
statistical mechanics, as well as the validation of molecular simulation results as no computer can simulate
fluids in the thermodynamic limit. Previously, a shell particle was included in the isothermal-isobaric en-
semble in order to resolve an ambiguity in the resulting partition function. The shell particle removed either
redundant volume states or redundant translational degrees of freedom of the system, and yielded quanti-
tative differences from traditional simulations in this ensemble. In this work, we investigate the effect of
including a shell particle in the canonical, grand canonical and Gibbs ensembles. For systems comprised of a
pure component ideal gas, analytical expressions for various thermodynamic properties are obtained. We also
derive the Metropolis Monte Carlo simulation acceptance criteria for these ensembles with shell particles, and
the results of the simulations of an ideal gas are in excellent agreement with the theoretical predictions. The
system size dependence of various important ensemble averages is also analyzed. (This is an author reprint.
See the published version at https://doi.org/10.1063/5.0224305.)

I. INTRODUCTION

Although many thermodynamic and statistical me-
chanical theories are applied in the thermodynamic limit
of infinite system sizes,1 the advent of the molecular sim-
ulation of fluids by Metropolis et al.2 led to a necessary
interest in small systems. In an attempt to calculate
bulk properties from a finite system, molecular simu-
lations commonly avoid the introduction of interacting
boundaries through the application of periodic bound-
ary conditions (PBCs).3,4 Nevertheless, PBCs do not
eliminate all finite size effects, as molecular simulations
must be performed with a limited number of particles.
Consequently, system size effects must be carefully con-
sidered in many simulations, as they are important in
the calculation of critical properties,5,6 surface tension,7

phase equilibrium,8 diffusion coefficients,9,10 viscosity,9,11

pressure,12 activity coefficients13 and other thermody-
namic properties.14

As another example, inconsistencies in the applica-
tion of the isothermal-isobaric (NpT ) ensemble to small
systems were previously noted. In particular, the origi-
nal formulation of this ensemble,15 when the volume is
treated as a continuous variable, sums over states for
which the volume of the system is not uniquely defined.
The resulting partition function therefore had units of
volume, which was typically then made dimensionless
through division by some arbitrary unit of volume.16

The volume of the system can be uniquely determined,
however, through the use of a “shell particle,” where at
least one particle resides in the differential volume dV
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surrounding the volume V .16–19 Consequently, the shell
particle automatically eliminates redundant microstates
from the NpT partition function, which is now neces-
sarily dimensionless. While inconsequential for a system
with a large number of particles, the use of the shell par-
ticle nonetheless yields quantitatively different thermo-
dynamic properties for small systems.17,18,20,21

In the derivation of the correct formulation of the NpT
ensemble, the system of interest with a fixed number of
particles was embedded within a much larger thermal and
pressure bath.17,18 When considering volume fluctuations
of the system, a boundary identifying the volume states
of the system needed to be introduced, which also served
to prevent both the particles in the surroundings from en-
tering the system volume and the particles in the system
from leaving the selected volume. Since the boundary
was only employed to identify a fluctuated volume state
of the system, its effects cannot appear in the final result.
The shell particle, via its removal of redundant volume
states, accomplished this task. By attaching the bound-
ary to a shell particle, a new and distinct microstate of
both the system and bath is necessarily generated when
the volume of the system is varied, i.e., a change in vol-
ume corresponds to a change in the configuration of the
system. Without a shell particle, the boundary can be
moved without altering the positions of any of the par-
ticles, thereby resulting in no variation of the given mi-
crostate.

However, when the system is contained within a vol-
ume for which PBCs are applied, as during a molecular
simulation, the particles within the system only interact
with themselves and not with the particles in the bath.
The particle configurations of the system and bath are
therefore independent, although the bath still maintains
its role as a pressure reservoir that limits the allowed vol-
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ume fluctuations of the system. Furthermore, even when
a shell particle is not present, a change in the volume of
the system automatically generates a new microstate of
the system, since a subset of the relative distances be-
tween particles varies as the volume is altered. Hence,
when PBCs are applied, a shell particle is not needed
to define the system volume, i.e., the issue of redundant
microstates no longer arises.

Nevertheless, the application of PBCs introduces an-
other set of redundant states that arguably should also be
removed. These redundant states follow from the trivial
uniform translation of the entire system within the tri-
clinic periodic boundaries. While a shell particle is no
longer needed to remove redundant volume states, Han
and Son22 showed for the NpT ensemble that a shell
particle, nonetheless, removes these translationally re-
dundant microstates from the partition function. (These
redundancies are straightforwardly removed upon intro-
duction of a shell particle, although this is not the only
way to eliminate them.) Upon their removal, the cor-
rect NpT partition function is still obtained. Yet, some
ensemble averages for systems with PBCs are still dif-
ferent from those obtained without PBCs and for which
redundant volume states were instead eliminated.21

In this article, we consider the impact of the removal
of translational redundancies on various thermodynamic
properties for systems in which PBCs are applied. These
redundancies are eliminated with the use of a shell parti-
cle, and we investigate the effect of its introduction into
other ensembles, besides just the NpT ensemble. Specifi-
cally, for systems with PBCs, we include the shell particle
in the grand canonical23,24 and Gibbs25 ensembles, which
to our knowledge has not been considered before.

Many researchers use Monte Carlo (MC) Gibbs ensem-
ble simulations to study phase behavior in bulk and con-
fined fluids.25–30 The motivation for considering a shell
particle in the Gibbs ensemble25 is similar to that for the
NpT ensemble. In MC simulations of bulk fluids in the
Gibbs ensemble with volume transfers,27 PBCs are sepa-
rately applied to each system in independent real spaces.
The volume transfer between these systems therefore oc-
curs virtually, and not by a flexible membrane or piston.
The removal of translational redundancies from both sys-
tems with PBCs can be accomplished through the intro-
duction of a shell particle into each system. We consider
the resulting finite size effects31 when a shell particle is
or is not employed in this ensemble.

In addition to volume transfer, particles may also
transfer between the two coupled systems in the Gibbs
ensemble.25 If a shell particle is used in each system, these
Gibbs ensemble simulations must avoid transferring the
shell particles. Hence, for particle transfers only, the use
of a shell particle gives rise to a minimum density in each
system. Particle transfers also occur in grand canonical
ensemble simulations, and so the use of a shell particle
in these simulations would also yield a minimum den-
sity. Preventing the density of the system from becoming
too low may have important implications for vapor-liquid

equilibrium calculations from flat-histogram simulations
in the grand canonical ensemble when the density of the
vapor is low.32 Moreover, when volume transfers also oc-
cur in Gibbs ensemble simulations, shell particles with
excluded volume should also prevent the volume of either
system from approaching a zero size. The introduction
of shell particles into the Gibbs ensemble may therefore
eliminate a known stability issue that potentially occurs
when they are not employed, particularly when there is a
large enough probability that one of the systems has no
particles and infinitesimal volume during a simulation.25

In what follows, we only consider systems composed
of a pure component ideal gas in order to demonstrate
the impact of the shell particle on various thermody-
namic properties. For an ideal gas, theoretical deriva-
tions are analytically tractable and yield closed-form ex-
pressions for the various probability distributions and en-
semble averages of the fluctuating thermodynamic vari-
ables. Hence, the differences in these quantities both
with and without a shell particle can be determined as
the system size increases. In addition, simulations of an
ideal gas using Metropolis MC are very straightforward.
Because an ideal gas does not interact with itself or the
boundaries of the system, the location of any particle
need not be explicitly stated; only the total number of
particles and the number of shell particles in the ensem-
ble needs to be specified during a simulation. All simula-
tions can therefore be implemented in a few dozen lines
of Python code, as included in the Supplemental Online
Material, and yield results with relatively small error bars
in less than an hour on a single processor. Thus, precise
comparisons between the theoretically derived thermody-
namic properties and the averages obtained directly from
Metropolis MC simulations can be obtained.
This paper is organized as follows. In Section II, we

begin with the simplest case of the canonical ensemble,
both with and without a shell particle. We then revisit in
Section III the previously considered isothermal-isobaric
ensemble and discuss the Metropolis MC simulations of
an ideal gas. By analogy, we then move to the case of the
Gibbs ensemble with only volume transfer in Section IV,
considering the standard presentation of no shell particles
and the new analysis with a shell particle in each coupled
system. The case of particle transfers are first considered
in the grand canonical ensemble in Section V and then
the Gibbs ensemble with only particle transfers in Section
VI. In Section VII, all of these concepts are combined
in the Gibbs ensemble with both volume and particle
transfers. Finally, conclusions and possible future work
are discussed in Section VIII.

II. CANONICAL (NV T ) ENSEMBLE

A system in the NV T ensemble has a constant number
of particles, N , a constant volume V and is maintained
at a fixed temperature, T . Since the canonical ensem-
ble partition function is utilized in both the Gibbs and
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grand canonical ensembles, we briefly consider how the
microstates available to the system in the NV T ensemble
change when a shell particle is used.

A. Canonical ensemble without a shell particle

The NV T ensemble partition function for N indistin-
guishable particles is given by

Q =
1

ΛdNN !

∫
drNe−βU , (1)

where d is the number of dimensions, Λ is the de Broglie
wavelength of a particle, U is the total potential energy
of the N -particle system, β = 1/(kBT ), kB is the Boltz-
mann constant and drN are the differential volume ele-
ments of all N particles. In the case of an ideal gas, for
which U = 0, the above reduces to1

Q =
V N

ΛdNN !
. (2)

All thermodynamic properties can be derived from the
partition function. For example, the internal pressure,
pint, is given by

βpint =
∂ lnQ

∂V

∣∣∣∣
β,N

=
N

V
, (3)

which is the familiar ideal gas equation of state.

B. Canonical ensemble with a shell particle

Consider now the use of a shell particle in the NV T
ensemble in order to remove translational redundant mi-
crostates when PBCs are applied. With particle 1 being
chosen as a reference particle, and with it being held
fixed in the differential volume element dr1, the NV T
ensemble partition function for this situation is given by

Q∗ dr1 =
dr1

ΛdN (N − 1)!

∫
drN−1e−βU , (4)

where U is again the total potential energy of all N par-
ticles. With particle 1 held fixed in a given location, it
is now distinguishable from the remaining N − 1 parti-
cles. In addition, Q∗ dr1 is dimensionless, as it again
represents a (weighted) number of microstates.

For a system with PBCs, the chosen fixed location
of particle 1 is arbitrary, and the same states contained
within Q∗ dr1 will be generated by placing particle 1 any-
where within V . In other words,22

Q∗ =
N

V
Q. (5)

Starting from the partition function without a shell parti-
cle, there are N choices for the reference or shell particle,

which generates identical states when located anywhere
within V .
For the case of an ideal gas, Eq. 5 becomes

Q∗ =
V N−1

ΛdN (N − 1)!
, (6)

where the superscript ∗ refers throughout this article to
any partition function or ensemble average that includes
a shell particle. Since no shell particle is explicitly used
in Eq. 5 and therefore the momenta of all particles con-
tribute to the pressure as discussed in Refs. 20 and 21,
the pressure of the ideal gas is still obtained using Eq.
3. Nevertheless, as will be shown in Sections IV and
VII, averages of the pressure in other ensembles besides
the canonical ensemble will be different when the shell
particle is or is not present.
In all subsequent derivations in this work, the ideal

gas resides in a cubical volume with PBCs, as is typi-
cally done in Metropolis MC simulations. When a shell
particle is introduced, only one shell particle is used in
each system with PBCs. There is no need to conduct
the trivial MC simulation of an ideal gas in the NV T en-
semble. Whether a shell particle is used or not, the ratio
of the microstate probabilities between any two ideal gas
states is always unity. Hence, the Metropolis acceptance
criterion for a trial particle displacement is also always
equal to unity.

III. ISOTHERMAL-ISOBARIC (NpT ) ENSEMBLE

Since the use of the shell particle is potentially rele-
vant for other ensembles, we consider here the thermo-
dynamic properties of the ideal gas in the NpT ensemble
both with and without a shell particle. We also present
the results of MC-NpT simulations of an ideal gas. Such
seemingly straightforward simulations are, nonetheless,
shown to be a useful tool for quickly verifying the theo-
retical derivations and may also be used to test the algo-
rithms appearing in more complex MC software. All MC
simulation code is provided in the Supplemental Online
Material.

A. Isothermal-isobaric ensemble without a shell particle

For a pure component system with N ideal gas par-
ticles exposed to a bath with constant pressure, p, and
constant temperature, T , the NpT ensemble partition
function is4

∆ =

∫ ∞

0

dV Qe−βpV =

∫ ∞

0

dV
V N

ΛdNN !
e−βpV . (7)

Note that the above is not dimensionless, with units of
volume. The second integral is evaluated with the help
of the Gamma function,33

Γ(n) = (n− 1)! =

∫ ∞

0

xn−1e−x dx, (8)
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FIG. 1. Probability density of the volume, V , nondimension-
alized by βp, of a pure component ideal gas obtained from
MC simulations in the isothermal-isobaric ensemble both with
(red circles) and without (blue pluses) a shell particle for
N = 3. Eqs. 10 and 18 are shown by the red and blue
lines, respectively. For the MC simulations, the total num-
ber of trials was Nt = 107, volume changes were bounded
by βp(δV ) = 3 and error bars are standard deviations of the
mean and often smaller than the symbols.

where n is a positive integer. Hence, Eq. 7 becomes

∆ =
1

ΛdN

1

(βp)N+1
. (9)

The probability density of finding the system with a given
volume is therefore equal to

P (V ) =
Q

∆
e−βpV = (βp)N+1V

N

N !
e−βpV , (10)

which is plotted in Fig. 1 for N = 3.
Using the above probability density, the ensemble av-

erage volume is given by

⟨V ⟩ =
∫ ∞

0

dV V P (V ) =
N + 1

βp
, (11)

where we have again made use of Eq. 8. Because re-
dundancies are included in ∆, this average volume is not
exactly the same as βpV = N . Eq. 11 becomes, however,
identical to the equation of state of an ideal gas in the
thermodynamic limit.

Next, consider the ensemble average of the inverse vol-
ume. Again, using Eq. 10, one finds that〈

1

V

〉
=

∫ ∞

0

dV
1

V
P (V ) =

βp

N
. (12)

In finite systems, the ensemble average of the inverse of a
fluctuating quantity is not necessarily equal to the inverse
of its ensemble average,34 or < 1/V > ̸= 1/ < V >.
Hence, while Eq. 11 yields

N

βp⟨V ⟩
=

N

N + 1
, (13)

FIG. 2. Various isothermal-isobaric ensemble averages as a
function of N for a pure component ideal gas. Ensemble av-
erages with ⟨...⟩∗ include a shell particle, while ⟨...⟩ do not.
The four ensemble averages are for each combination of with
or without a shell particle, and averages of extensive thermo-
dynamic properties or their inverses. The lines show Eqs. 13,
14, 21 and 22. The symbols are the MC simulation results,
with similar details as described in Fig. 1.

the direct ensemble average of the density, obtained using
Eq. 12, results in

N⟨1/V ⟩
βp

= 1. (14)

Both averages are plotted vs N in Fig. 2, and become
identical as N increases toward the thermodynamic limit.
Eq. 14 also indicates, with the use of Eq. 3, that
⟨βpint⟩ = ⟨ρ⟩ = βp, where ρ = N/V .
To further illustrate and test these theoretical deriva-

tions, Metropolis MC simulations of an ideal gas were
performed in the NpT ensemble without a shell particle.
For these simulations, since U = 0, there is no need to
store the particle positions, and thus no need for par-
ticle displacement trial moves. Only the instantaneous
volume of the system needs to be sampled. Here, Nt tri-
als were attempted to change the volume uniformly by
a random amount within the bounds of [−δV, δV ], and
were accepted or rejected according to the Metropolis ac-
ceptance probability of min(1, χ). χ is derived based on
the ratio of the microstate probability densities, given by
Eq. 10, of the newly proposed state and the previous old
state,2,4

χ =

(
Vn

Vo

)N

e−βp(Vn−Vo), (15)

where Vo is the volume of the old microstate and Vn is
the volume of the new microstate.
After an initial equilibration of 103 trials, ensemble av-

erages were obtained from Nt = 107 trials. Error bars are
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included in all MC simulation results throughout this ar-
ticle, and are computed as the standard deviation of the
mean obtained by the blocking method,35 using blocks
with a size of 102 trials. Standard deviations of the mean
values of the probability densities were obtained from ten
blocks. Standard deviations of functions of the ensemble
averages were obtained using error propagation. The re-
sults of the MC simulations were statistically equivalent
to the expected theoretical results, as seen in Figs. 1 and
2.

B. Isothermal-isobaric ensemble with a shell particle

We now consider the thermodynamic properties of a
pure component ideal gas in the NpT ensemble with a
shell particle. In this case, the NpT ensemble partition
function is given by

∆∗ =

∫ ∞

0

dV Q∗e−βpV =

∫ ∞

0

dV
V N−1

ΛdN (N − 1)!
e−βpV .

(16)
Hence, with Eq. 8,

∆∗ =
1

ΛdN

1

(βp)N
, (17)

which is dimensionless. The probability density of the
volume is

P ∗(V ) =
Q∗

∆∗ e
−βpV = (βp)N

V N−1

(N − 1)!
e−βpV , (18)

and is shown in Fig. 1 for N = 3. With the shell particle,
smaller volumes are more likely to occur, as compared to
how they are sampled without a shell particle.

The ensemble average of the volume is now given by

⟨V ⟩∗ =

∫ ∞

0

dV V P ∗(V ) =
N

βp
. (19)

The ensemble average of the inverse volume is equal to〈
1

V

〉∗

=

∫ ∞

0

dV
1

V
P ∗(V ) =

βp

N − 1
, (20)

where N > 1. Eq. 19 indicates that

N

βp⟨V ⟩∗
= 1 (21)

while Eq. 20 requires that

N⟨1/V ⟩∗

βp
=

N

N − 1
. (22)

Both results become identical as the system size increases
toward the thermodynamic limit, as also shown in Fig.
2. Furthermore, while ⟨βpint⟩∗ = ⟨ρ⟩∗ for the case of the
shell particle, we also have that

⟨βpint⟩∗ −
⟨ρ⟩∗

N
= βp, (23)

matching a finite system size result previously obtained
for a cubical box with PBCs.20

Metropolis MC simulations of an ideal gas were also
performed in the NpT ensemble with a shell particle.
The simulations were performed as described in Section
IIIA, except that the microstate probability with a shell
particle, Eq. 18, leads to the following acceptance crite-
rion for volume changes

χ =

(
Vn

Vo

)N−1

e−βp(Vn−Vo). (24)

Due to the presence of the shell particle, the above has an
exponent of N−1 for the volume ratio, instead of the ex-
ponent of N appearing in Eq. 15. If volume changes were
performed isotropically in lnV instead of V , then the
coordinate transformation P (V ) dV ≈ P (lnV )V d lnV
would lead to an exponent of N with a shell particle and
N+1 without a shell particle. The results of the MC sim-
ulations with a shell particle were statistically equivalent
to the expected theoretical results, as shown in Figs. 1
and 2.
Finally, we discuss another possible interpretation for

the need of a shell particle in MC simulations with vol-
ume changes and in which PBCs are applied. The shell
particle serves to locate a particular position where the
affine transformation of isotropic volume changes is cen-
tered, and for which the scaling of particle coordinates
is required to satisfy detailed balance. If the volume
were decreased without altering any of the particle coor-
dinates, any particle positions that subsequently landed
outside of the simulation box would then be shifted to
another location by the PBCs. The reverse trial move to
a larger volume state, again without changing the parti-
cle coordinates, would not, however, return those shifted
particles to their original locations. Hence, with PBCs,
volume moves without the scaling of particle coordinates
would not obey detailed balance. In principle, isotropic
volume changes with PBCs do not require the center of
the system to be identified. Yet, in simulations an ori-
gin of the chosen coordinate system is specified, and can
therefore be used as the center of an affine transforma-
tion. If the positions of all the particles are defined with
respect to the location of the shell particle, then the shell
particle may be located at the origin for convenience.
Hence, the position of the shell particle, unlike the re-
maining N − 1 particles, is not scaled during a volume
change. The acceptance criterion for volume moves is
therefore affected by the presence of the shell particle
since it only depends on the number of scaled particle
coordinates.

IV. GIBBS ENSEMBLE WITH VOLUME TRANSFER
ONLY

In the NpT ensemble, the system is maintained at
mechanical equilibrium by being exposed to a bath at
constant pressure. In the Gibbs ensemble, two systems
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reach mechanical equilibrium with each other through
the transfer of volume between them. Particle transfers
also occur in the Gibbs ensemble, but are not yet con-
sidered in this section. As in the NpT ensemble, the
presence or absence of a shell particle quantitatively af-
fects the resulting thermodynamic properties, as shown
using both theoretical derivations and MC simulations.

A. Gibbs ensemble with volume transfer only between two
systems and no shell particles

The volumes of the two systems, V1 and V2 = V − V1,
are allowed to fluctuate, but their total volume, V re-
mains constant, V1 ∈ [0, V ]. The number of particles in
the first system, N1, is constant, as are the number of
particles in the second system, N2 = N −N1, where N is
the total number of particles (i.e., particles are not trans-
ferred between the two systems). The partition function
of this composite system without any shell particles is

QG,N =
1

V ΛdN

∫ V

0

dV1
V N1
1

N1!

(V − V1)
N−N1

(N −N1)!
, (25)

where division by V makes the partition function
dimensionless.4,36 In order to evaluate this integral, we
make use of37∫ u

0

xv(u− x)w dx = uv+w+1 v!w!

(v + w + 1)!
, (26)

in which v, w > −1. Hence,

QG,N =
1

ΛdN

V N

(N + 1)!
. (27)

The probability density that the first system has a vol-
ume V1 is given by

P (V1) =
1

QG,N

1

V ΛdN

V N1
1

N1!

(V − V1)
N−N1

(N −N1)!
, (28)

which upon substitution of Eq. 27 yields

P (V1) =
(N + 1)!

V N+1

V N1
1

N1!

(V − V1)
N−N1

(N −N1)!
. (29)

This probability density is shown in Fig. 3 for N1 = 2
and N2 = 4.
The ensemble average of V1 is given by

⟨V1⟩ =
∫ V

0

dV1V1P (V1) = V

(
N1 + 1

N + 2

)
, (30)

where we have again made use of Eq. 26. Similarly,
⟨V2⟩ = V (N2 + 1) /(N + 2). The ensemble average of
the inverse of V1 is〈

1

V1

〉
=

∫ V

0

dV1
1

V1
P (V1) =

N + 1

V N1
, (31)

FIG. 3. Probability density of the volume, V1 of the first
of two ideal gas systems in the Gibbs ensemble with volume
transfers only, nondimensionalized by the total volume, V , for
N1 = 2 and N2 = 4. The symbols are the MC simulations
results for the cases of no shell (red circles) and shell particles
in each system (blue pluses), with Nt = 107 and δVt = V/3.
The lines show the predictions of Eqs. 29 and 35.

where N1 ≥ 1. With a corresponding result for the in-
verse volume of the second system, along with for exam-
ple βp1 = N1/V1 = ρ1, we have that

⟨βp1⟩ = ⟨ρ1⟩ =
N + 1

V
= ⟨ρ2⟩ = ⟨βp2⟩ . (32)

While ⟨ρ1⟩ = ⟨ρ2⟩ regardless of the system size (although
they are not equal to the bulk density of the entire com-
bined system), N1/⟨V1⟩ and N2/⟨V2⟩ are not equal to
each other except in the thermodynamic limit.
Metropolis MC simulations of an ideal gas were also

performed in the Gibbs ensemble without a shell parti-
cle and with volume transfer only using Nt attempted
volume transfer trials between the two systems. These
volume transfer trials were performed as follows. The
amount of a particular attempted volume transfer was
uniformly selected at random between [0, δVt = 0.5V1].
The direction of transfer from system 1 to 2, or 2 to
1, was randomly selected with equal probabilities. The
acceptance criterion χ is again based on the ratio of mi-
crostate probabilities of the new proposed state and the
old state, which given Eq. 29 results in

χ =

(
Vn1

Vo1

)N1
(
Vn2

Vo2

)N2

, (33)

where Vn1 and Vo1 are the volumes of the first system
in the new and old states, respectively, and Vn2 and Vo2

are the volumes of the second system in the new and old
states, respectively. Error bars were obtained as previ-
ously described in Section III. The results of these MC
simulations were statistically equivalent to the expected
theoretical results, as shown in Figs. 3 and 4.
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FIG. 4. Various averages in the Gibbs ensemble with volume
transfer only as a function of N1 for a pure component ideal
gas with N1 = 2N2 and for which V/N = 1. The lines are the
predictions of Eqs. 30, 31, 36 and 37, and the symbols show
the results of MC simulations with Nt = 106 and δVt = V/6.

B. Gibbs ensemble with volume transfer only between two
systems with shell particles

For the Gibbs ensemble with shell particles and volume
transfer only, we explicitly consider the two systems to
exist in independent real spaces and both with PBCs. A
shell particle is then used in each system to remove the in-
dependent set of translational redundancies, as discussed
in Section II B. If the two small systems were instead
connected by a massless boundary, only one shell parti-
cle would be needed to remove the volume redundancies
that would now arise. We do not consider this case here.

With a shell particle in each system, the partition func-
tion for volume transfers only is now given by

Q∗
G,N =

V

ΛdN

∫ V

0

dV1
V N1−1
1 (V − V1)

N−N1−1

(N1 − 1)!(N −N1 − 1)!

=
1

ΛdN

V N

(N − 1)!
,

(34)

where N1, N2 ≥ 1, the multiplication by V ensures Q∗
G,N

is dimensionless, and we have again made use of Eq. 26.
Hence, the probability density that the first system has
a volume V1 is

P ∗(V1) =
1

Q∗
G,N

V

ΛdN

V N1−1
1

(N1 − 1)!

(V − V1)
N−N1−1

(N −N1 − 1)!

=
(N − 1)!

V N−1

V N1−1
1

(N1 − 1)!

(V − V1)
N−N1−1

(N −N1 − 1)!
,

(35)

which is plotted in Fig. 3 for N1 = 2, N2 = 4 and for
which V/N = 1. As in Section III, smaller volumes are
more likely to be sampled when a shell particle is used
as compared to the no shell particle case.

The ensemble average of the volume of the first system
is equal to

⟨V1⟩∗ =

∫ V

0

dV1V1P
∗(V1) = V

N1

N
. (36)

Similarly, ⟨V2⟩∗ = V N2/N . The ensemble average of the
inverse of V1 is〈

1

V1

〉∗

=

∫ V

0

dV1
1

V1
P ∗(V1) =

N − 1

V (N1 − 1)
, (37)

where N1 ≥ 2. Here, N1/⟨V1⟩∗ = N2/⟨V2⟩∗ = N/V
for all system sizes, while ⟨ρ1⟩∗ ̸= ⟨ρ2⟩∗ except in the
thermodynamic limit. However, with βp1 = N1/V1, we
find that

⟨βp1⟩∗ −
⟨ρ1⟩∗

N1
=

N − 1

V
= ⟨βp2⟩∗ −

⟨ρ2⟩∗

N2
. (38)

The above is, nevertheless, consistent with mechanical
equilibrium based on the result for systems with PBCs
indicated in Eq. 23.
Metropolis MC simulations of an ideal gas were per-

formed in the Gibbs ensemble with two shell particles
and with volume transfers only. The simulations were
performed as described in Section IVA, but in this case,
the ratio of microstate probabilities obtained from Eq.
35 leads to an acceptance criterion of

χ =

(
Vn1

Vo1

)N1−1(
Vn2

Vo2

)N2−1

. (39)

The MC simulation results were again found to be statis-
tically equivalent to the expected theoretical results, as
shown in Figs. 3 and 4.

V. GRAND CANONICAL (µV T ) ENSEMBLE

In the Sections III and IV, we considered mechanical
equilibrium of a system with an infinite bath (isothermal-
isobaric ensemble) and with another system (Gibbs en-
semble with volume transfer only). In this section, we
investigate the use of a shell particle in the grand canon-
ical (µV T ) ensemble, in which the volume of the system
is fixed, but particles are exchanged with a bath that im-
poses both a fixed temperature and fixed chemical poten-
tial µ. We again present the results for a pure component
ideal gas both with and without a shell particle and com-
pare the results of MC simulations to these predictions.

A. Grand canonical ensemble without a shell particle

The partition function in the µV T ensemble is given
by1

Ξ =

∞∑
N=0

(zΛd)NQ, (40)
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FIG. 5. Probability of the number of ideal gas particles, N ,
in the grand canonical ensemble for V z = 1 both with and
without a shell particle. The bars show the predictions of
Eqs. 44 (red) and 53 (blue), and the symbols (red circles: no
shell; blue plus: shell) are the results of MC simulations with
Nt = 107.

where z = eβµ/Λd is the activity. For a pure component
ideal gas, and for which no shell particle is employed, the
above becomes after substitution of Eq. 2

Ξ =

∞∑
N=0

(V z)N

N !
. (41)

Using the following series definition of the exponential
function37

ex =

∞∑
k=0

xk

k!
, (42)

Eq. 41 is also equal to

Ξ = eV z. (43)

Thus, the probability that the system is found with a
given number of particles N is

P (N) =
1

Ξ

(V z)N

N !
= e−V z (V z)N

N !
, (44)

which is shown in Fig. 5 for V z = 1.
The ensemble average of N is determined from

⟨N⟩ =
∞∑

N=0

NP (N) = V ze−V z
∞∑

N=1

(V z)N−1

(N − 1)!
, (45)

where the N = 0 term vanishes. Use of Eq. 42 leads to

⟨N⟩ = V z, (46)

which also follows from ⟨N⟩ = z (∂ ln Ξ/∂z)β,V . Hence,

V z/⟨N⟩ = 1 for all system sizes, as shown in Fig. 6.

FIG. 6. Various grand canonical ensemble averages as a func-
tion of V z for a pure component ideal gas. The lines show
Eqs. 46, 49, 55 and 56 as red, orange, blue and green lines,
respectively, while the symbols show the MC simulation re-
sults with Nt = 107 as red circles, orange crosses, blue pluses
and green stars, respectively.

Next, consider the ensemble average of the inverse
number of particles. Since P (N = 0) = e−V z from Eq.
44 is finite and non-zero, the ensemble average of 1/N
cannot include any microstates for which N = 0 because
division by zero is an undefined operation. Thus, the
ensemble average of this quantity must be calculated as
follows:〈

1

N

〉
=

∑∞
N=1

1
N P (N)∑∞

N=1 P (N)
=

e−V z

1− e−V z

∞∑
N=1

1

N

(V z)N

N !
.

(47)
Using the Puiseux series of the exponential integral, Ei,38

Ei(x)− ln(x)− γ =

∞∑
k=1

xk

k(k!)
, (48)

where γ is the Euler-Mascheroni constant, Eq. 47 can be
rewritten as〈

1

N

〉
=

1

eV z − 1
[Ei(V z)− ln(V z)− γ]. (49)

From the limits of Ei for small and large values of its ar-
gument, Eq. 49 indicates that V z ⟨1/N⟩ → 0 as V z → 0,
while V z ⟨1/N⟩ → 1 as V z → ∞. These trends are
confirmed in Fig. 6, which plots V z ⟨1/N⟩ vs V z as
obtained from Eq. 49. For a small system ideal gas,
1/ ⟨N⟩ ≠ ⟨1/N⟩.
MC simulations of a pure component ideal gas in the

µV T ensemble were performed without a shell particle
as follows. For the ideal gas, the only relevant MC trial
move is the insertion or deletion of particles. An insertion
or deletion was randomly attempted with equal probabil-
ities. The acceptance criterion follows from the ratio of
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microstate probabilities in Eq. 44, resulting in

χ =
No!

Nn!
(V z)Nn−No , (50)

where Nn and No are the number of particles in the new
and old microstates, respectively. For the insertion of a
single particle, χ = V z/(No + 1), and for the deletion
of a single particle, χ = No/(V z).24 The MC simulation
results were statistically equivalent to the expected the-
oretical results, as seen in Figs. 5 and 6.

B. Grand canonical ensemble with a shell particle

We now consider the case of a shell particle in the µV T
ensemble, used again to remove translational redundan-
cies when PBCs are applied. Since the shell particle de-
fines a reference point about which the positions of all
other particles are defined, the shell particle cannot be
removed from the system; otherwise, the spatial domain
of the system would no longer be defined. For this rea-
son, N ≥ 1, and so the partition function with a shell
particle is now given by

Ξ∗ =

∞∑
N=1

(zΛd)NQ∗ dr1, (51)

where shell particle 1 is held fixed in the differential vol-
ume element dr1. Upon substitution of Eq. 6 into the
above, one finds that

Ξ∗ = dr1z

∞∑
N=1

(V z)N−1

(N − 1)!
= dr1ze

V z. (52)

The probability of finding the system with a given num-
ber of particles, N ≥ 1, is therefore equal to

P ∗(N) =
1

Ξ∗
dr1z

NV N−1

(N − 1)!
= e−V z (V z)N−1

(N − 1)!
. (53)

P ∗(N) with a shell particle is equivalent to P (N − 1)
without a shell particle, Eq. 44. This is also shown in Fig.
5, in which the shell particle histogram is simply shifted
to the right, by one particle, of the no shell histogram.

The ensemble average of N is given by

⟨N⟩∗ =

∞∑
N=1

NP ∗(N) = e−V z
∞∑

N=1

N
(V z)N−1

(N − 1)!
. (54)

Upon rewriting the second sum and making use of Eq.
42, one finds that

⟨N⟩∗ = e−V z
∞∑

N=1

(N − 1)
(V z)N−1

(N − 1)!
+ e−V z

∞∑
N=1

(V z)N−1

(N − 1)!

= V z + 1,

(55)

which also follows from ⟨N⟩∗ = z (∂ ln Ξ∗/∂z)β,V .

Clearly, ⟨N⟩∗ → 1 as V z → 0.
Since N ≥ 1, there is a lower bound of 1/V for the

grand canonical ensemble-averaged density. When there
is no shell particle, and for which the N = 0 state is al-
lowed, the average density may reach a zero value. While
this minimum density may never be reached for large
enough systems, it may still be important for and give
rise to quantifiable effects in small systems.
The ensemble average of the inverse number of parti-

cles with a shell particle is more straightforward to obtain
than in Section VA because of the condition of N ≥ 1.
Here,〈

1

N

〉∗

=

∞∑
N=1

1

N
P ∗(N) =

e−V z

V z

∞∑
N=1

(V z)N

N !

=
1− e−V z

V z
,

(56)

again making use of Eq. 42. As V z → 0, ⟨1/N⟩∗ → 1, as
expected. We also have that

⟨N⟩∗
〈

1

N

〉∗

=

(
1− e−V z

)
(1 + V z)

V z
, (57)

which goes to 1 as both V z → 0 and V z → ∞, but has a
maximum around V z ≈ 1.79, at which it also has a value
of ≈ 1.8.
Metropolis MC simulations of an ideal gas were also

performed in the µV T ensemble with a shell particle. The
shell particle cannot be among those particles chosen for
deletion (N ≥ 1). The acceptance criterion for insertion
and deletion trial moves, as obtained from the ratio of
microstate probabilities in Eq. 53, is now

χ =
(No − 1)!

(Nn − 1)!
(V z)Nn−No , (58)

where χ = V z/No for the insertion of a single particle,
and χ = (No − 1)/V z for the deletion of a single par-
ticle. Except for this different acceptance criterion, the
MC simulations were performed otherwise identically to
those described in Section VA. The results of these MC
simulations were again statistically equivalent to the ex-
pected theoretical results, as shown in Figs. 5 and 6.

VI. GIBBS ENSEMBLE WITH PARTICLE TRANSFER
ONLY

In the grand canonical ensemble, the chemical poten-
tial of the system is maintained through chemical equilib-
rium with a bath of infinite size. In the Gibbs ensemble,
two systems reach chemical equilibrium with each other
via the transfer of particles between them. Here, we con-
sider particle transfers only between the two systems,
each with fixed volumes. Again, as seen in Sections II to
VI, the presence or absence of a shell particle quantita-
tively affects the resulting thermodynamic properties.
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FIG. 7. Probability of the number of ideal gas particles, N1,
in the first of two systems within the Gibbs ensemble with
particle transfer only. The bars show Eqs. 61 (no shell) and
72 (shell) for V1/V = 3/10 and N = 10, while the symbols
(red circle, no shell; blue +, shell) show the results of MC
simulations with Nt = 107.

A. Gibbs ensemble with particle transfer only between
two systems without shell particles

The number of particles in the two systems, N1 and
N2 = N −N1, is allowed to fluctuate, but the total num-
ber of particles, N , remains constant, N1 ∈ [0, N ]. The
volume of both systems, V1 and V2 = V − V1, is fixed, as
well as the total volume, V . The partition function of this
ideal gas composite system without any shell particles is

QG,V =

N∑
N1=0

1

ΛdN

V N1
1

N1!

(V − V1)
N−N1

(N −N1)!
=

V N

N !ΛdN
, (59)

which was evaluated using the Binomial theorem,37

(x+ y)n =

n∑
k=0

(
n

k

)
xn−kyk, (60)

and for which
(
n
k

)
= n!/[k!(n−k)!]. The probability that

there are N1 particles in the first system is given by

P (N1) =
1

QG,V

1

N !ΛdN

(
N

N1

)
V N1
1 (V − V1)

N−N1

=

(
N

N1

)(
V1

V

)N1
(
1− V1

V

)N−N1

.

(61)

P (N1) is shown in Fig. 7 for V1/V = 3/10 and N =
10. As in Section VA, there is a non-zero probability at
N1 = 0, in which P (N1 = 0) = (1− V1/V )N .

FIG. 8. Various Gibbs ensemble averages with particle trans-
fer only as a function of V1N/V for a pure component ideal
gas, in which V/N = 1 and V1 = V2/2. The lines are Eqs. 66,
67, 76 and 78, and the symbols are the results of MC simula-
tions with Nt = 107.

The ensemble average of N1 is given by

⟨N1⟩ =
N∑

N1=0

N1P (N1)

=

N∑
N1=1

N1

(
N

N1

)(
V1

V

)N1
(
1− V1

V

)N−N1

.

(62)

To assist in evaluating the above summation, consider
the following function:39

F (s) =

n∑
k=1

(
n

k

)
(ps)k(1−p)n−k = [ps+(1−p)]n−(1−p)n,

(63)
where 0 ≤ p ≤ 1 and

F (s = 1) =

n∑
k=1

(
n

k

)
pk(1− p)n−k = 1− (1− p)n. (64)

Independent evaluation of the derivatives of both the left-
and right-hand sides of Eq. 63 at s = 1 results in

dF

ds

∣∣∣∣
s=1

=

n∑
k=1

k

(
n

k

)
pk(1− p)n−k = np. (65)

Comparing Eq. 65 to Eq. 62, with p = V1/V , indicates
that

⟨N1⟩ = N
V1

V
, (66)

with a similar result for N2.
Since P (N1 = 0) = (1−V1/V )N is finite and non-zero,

the ensemble average of 1/N1 cannot include the N1 = 0
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state because division by zero is an undefined operation.
Using a similar approach as for the µV T ensemble with-
out a shell particle in Section VA, this ensemble average
must only include states for which N1 ≥ 1, all of which
must then be normalized by 1− P (N1 = 0), or

〈
1

N1

〉
=

∑N
N1=1

1
N1

P (N1)

1− P (N1 = 0)

=

∑N
N1=1

1
N1

(
N
N1

) (
V1

V

)N1
(
1− V1

V

)N−N1

1− (1− V1/V )N
.

(67)

A similar result can be obtained for ⟨1/N2⟩, both of
which appear to require numerical evaluation. While
V1/⟨N1⟩ and V2/⟨N2⟩ are always equal to one another,
⟨V1/N1⟩ ≠ ⟨V2/N2⟩, except in the thermodynamic limit.
These trends are shown in Fig. 8.

Metropolis MC simulations of an ideal gas were per-
formed in the Gibbs ensemble without shell particles and
with particle transfers only. Particle transfers were per-
formed as follows. The direction of particle transfer from
system 1 to 2, or from 2 to 1, was randomly selected with
equal probabilities. The acceptance criterion, χ, was ob-
tained from the ratio of the microstate probabilities of
the newly proposed state and the old state using Eq. 61,

χ =
No1!(N −No1)!

Nn1!(N −Nn1)!

(
V1

V − V1

)Nn1−No1

. (68)

We only allowed the transfer of a single particle for each
attempted trial move. Hence, for a particle transfer from
2 to 1, Nn1 = No1+1 and χ = (N−No1)V1/[(No1+1)V2],
and for a particle transfer from 1 to 2, Nn1 = No1 − 1
and χ = No1V2/[(N − No1 + 1)V1]. Error bars and his-
tograms were obtained as described in the Section IIIA.
The results of these MC simulations were statistically
equivalent to the expected theoretical results, as shown
in Figs. 7 and 8.

B. Gibbs ensemble with particle transfer only between
two systems with shell particles

We now consider the case for which PBCs are applied
separately to both systems in the Gibbs ensemble. Two
shell particles are therefore employed, one in each system,
and so N1, N2 ≥ 1 or N1 ∈ [1, N − 1]. The partition
function of this composite system with particle transfer
only is given by

Q∗
G,V =

N−1∑
N1=1

dr1 dr2
ΛdN

V N1−1
1

(N1 − 1)!

(V − V1)
N−N1−1

(N −N1 − 1)!
, (69)

where the shell particles are held fixed in the differential
volume elements dr1 and dr2. This summation may be

rearranged as follows:

Q∗
G,V =

dr1 dr2V
N−1

V1(N − 1)!ΛdN
×

N−1∑
N1=1

N1

(
N − 1

N1

)(
V1

V

)N1
(
1− V1

V

)N−N1−1

, (70)

which, upon comparing to Eq. 65 with n = N − 1 and
p = V1/V , simplifies to

Q∗
G,V =

dr1 dr2V
N−2

(N − 2)!ΛdN
. (71)

The probability that N1 particles are found in system 1
is equal to

P ∗(N1) =
1

Q∗
G,V

dr1 dr2
ΛdN

V N1−1
1

(N1 − 1)!

(V − V1)
N−N1−1

(N −N1 − 1)!

=
N1

(N − 1)

(
N − 1

N1

)(
V1

V

)N1−1(
1− V1

V

)N−N1−1

.

(72)

Unlike what was seen for the µV T ensemble, there is
no simple connection between this shell particle result,
P ∗(N1), and the no shell result of P (N1). P ∗(N1) is
shown in Fig. 7 for V1/V = 3/10. At the lower limit of
N1 = 1, P ∗(N1 = 1) = (1− V1/V )(N−1) ̸= 0.
The ensemble average of N1 is determined from

⟨N1⟩∗ =

N−1∑
N1=1

N1P
∗(N1) =

1

N − 1

V

V1
×

N−1∑
N1=1

N2
1

(
N − 1

N1

)(
V1

V

)N1
(
1− V1

V

)N−N1−1

. (73)

Now, returning to Eq. 63, we have

d2F

ds2
=

n∑
k=1

(
n

k

)
k(k − 1)sk−2pk(1− p)n−k. (74)

After evaluation at s = 1, one can show

n∑
k=1

(
n

k

)
k2pk(1− p)n−k = np+ n(n− 1)p2. (75)

Comparing Eq. 75 to Eq. 73, we find

⟨N1⟩∗ = 1 + (N − 2)
V1

V
. (76)

The influence of the shell particle is seen in the above
since 1 ≤ ⟨N1⟩∗ ≤ N − 1 for 0 ≤ V1 ≤ V , as well as
N ≥ 2. Similarly, ⟨N2⟩∗ = 1 + (N − 2)(1 − V1/V ). As
also discussed in Section VB, the use of the shell particle
in a fixed volume system automatically yields a lower
bound on the densities of each system.
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The ensemble average of the inverse of N1 is given by

〈
1

N1

〉∗

=

N−1∑
N1=1

1

N1
P (N1) =

1

N − 1

V

V1
×

N−1∑
N1=1

(
N − 1

N1

)(
V1

V

)N1
(
1− V1

V

)N−N1−1

. (77)

Making use of Eq. 64, we have that

〈
1

N1

〉∗

=
1

N − 1

V

V1

[
1−

(
1− V1

V

)N−1
]
. (78)

The above indicates that 1/(N − 1) ≤ ⟨1/N1⟩∗ ≤ 1,
again since 0 ≤ V1 ≤ V and N ≥ 2. Hence, while
⟨1/N1⟩∗ = 1/ ⟨N1⟩∗ at the two limiting volumes, these
two quantities are otherwise not the same. A similar re-
sult follows for system 2, after replacing each subscript
1 with a 2. Consequently, V1/ ⟨N1⟩∗ ̸= V2/ ⟨N2⟩∗, except
in the thermodynamic limit. In addition,

〈
V1

N1

〉∗

−
〈
V2

N2

〉∗

=
V

(N − 1)

[(
V1

V

)N−1

−
(
V2

V

)N−1
]
,

(79)
which is not equal to zero, except in the thermodynamic
limit or if V1 = V2.

Metropolis MC simulations of an ideal gas were per-
formed in the Gibbs ensemble with shell particles and
with particle transfers only. The simulations were con-
ducted as described in Section VIA, except that the ac-
ceptance criterion is given by the ratio of the microstate
probabilities obtained from Eq. 72,

χ =
(No1 − 1)!(N −No1 − 1)!

(Nn1 − 1)!(N −Nn1 − 1)!

(
V1

V − V1

)Nn1−No1

.

(80)
We again considered the transfer of only a single parti-
cle for each attempted trial move. Hence, for a particle
transfer from 2 to 1, Nn1 = No1 + 1, χ = (N − No1 −
1)V1/[(No1)V2], and for a particle transfer from 1 to 2,
Nn1 = No1 − 1 and χ = (No1 − 1)V2/[(N − No1)V1].
These MC simulations yielded results that were statisti-
cally equivalent to the expected theoretical predictions,
as shown in Figs. 7 and 8.

VII. GIBBS ENSEMBLE WITH VOLUME AND
PARTICLE TRANSFER

For our final case of interest, we consider the Gibbs
ensemble with both volume and particle transfers. The
two coupled systems are therefore in both mechanical and
chemical equilibrium with each other.

A. Gibbs ensemble with both volume and particle
transfers between two systems without shell particles

In the Gibbs ensemble with volume and particle trans-
fers, both the number of particles and volume of each of
the two systems fluctuate, while the total number of par-
ticles, N1+N2 = N , and total volume, V = V1+V2, both
remain constant. Without a shell particle, the partition
function of this composite system is

QG =
1

V ΛdN

N∑
N1=0

∫ V

0

dV1
V N1
1

N1!

(V − V1)
N−N1

(N −N1)!

=
1

V ΛdN

N∑
N1=0

V N+1

(N + 1)!
=

V N

ΛdNN !
,

(81)

where there are N +1 identical terms in the last summa-
tion. The probability that there are N1 particles in the
first system, regardless of its volume, is therefore equal
to

P (N1) =
1

QG

1

ΛdN

V N

(N + 1)!
=

1

N + 1
, (82)

which is uniform or independent ofN1. This is also shown
in Fig. 9. Switching the order of the summation and
integral in Eq. 81, we also have that

QG =
V N−1

ΛdNN !

∫ V

0

dV1, (83)

which implies that the probability density of the volume
of the first system, regardless of the number of particles
it contains, is also uniform since

P (V1) =
1

QG

1

ΛdN

V N−1

N !
=

1

V
. (84)

This probability density is shown in Fig. 10.
The ensemble average of N1, regardless of its volume,

is

⟨N1⟩ =
N∑

N1=0

N1P (N1) =
1

N + 1

N∑
N1=0

N1 =
N

2
, (85)

where we have made use of the triangular number series.
For an ideal gas, the two systems therefore have on aver-
age the same number of particles. The ensemble average
of V1, regardless of the number of particles present in the
first system, is

⟨V1⟩ =
∫ V

0

dV1V1P (V1) =
1

V

∫ V

0

dV1V1 =
V

2
. (86)

Thus, the two systems also have on average the same
volume. Consequently, ⟨V1⟩/⟨N1⟩ = V/N = ⟨V2⟩/⟨N2⟩.
For a given N1 ̸= 0 in the first system, the ensemble

average of its inverse volume is given by Eq. 31. Thus,
in this case, ⟨N1/V1⟩ = (N + 1)/V . However, for N1 =
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FIG. 9. Probability of the number of ideal gas particles, N1,
in the first of two systems, regardless of its volume, in the
Gibbs ensemble with both volume and particle transfers for
N = 8 and V/N = 1. The bars show Eqs. 82 and 90, and the
symbols indicate the results of MC simulations with Nt = 107

and δV = 0.05V .

FIG. 10. Probability density of the ideal gas volume, V1, in
the first of two systems, regardless of the particle number, in
the Gibbs ensemble with both volume and particle transfers
for N = 8 and V/N = 1. The lines show Eqs. 84 and 92,
and the symbols indicate the results of MC simulations with
Nt = 107 and δV = 0.05V .

0, when separately evaluated, ⟨N1/V1⟩ = 0. Therefore,
when averaging over N1, we have that〈

N1

V1

〉
=

N∑
N1=1

N + 1

V
P (N1) =

N

V
. (87)

Since βp1 = N1/V1, we also have that ⟨βp1⟩ = ⟨βp2⟩,
where ⟨βp2⟩ = ⟨N2/V2⟩ = N/V .
Since P (N1 = 0) = 1/(N+1) from Eq. 82 is finite and

non-zero, the ensemble average of ⟨V1/N1⟩ cannot include

FIG. 11. Various ensemble averages of the density or volume
per particle of the first system as a function of N , nondimen-
sionalized by N/V , for the Gibbs ensemble with both volume
and particle transfers. The lines are Eqs. 85, 86, 87, 93, 94
and 95. The symbols show the result of MC simulations as
described in Figs. 9 and 10 and with Nt = 107. Error bars
are not included for the ratios of ensemble averages.

any microstates for which N1 = 0 because division by
zero is an undefined operation. Using Eq. 30, then

〈
V1

N1

〉
=

∑N
N1=1 V

N1+1
N1(N+2)P (N1)∑N

N1=1 P (N1)

=
V

N + 2

(
1 +

1

N

N∑
N1=1

1

N1

)
.

(88)

The harmonic series appearing in the last line in the
above eventually grows as lnN , so ⟨V1/N1⟩ should ap-
proach V/(N + 2) at large N . With a similar result
also obtained for the second system, we also have that
⟨V1/N1⟩ = ⟨V2/N2⟩ regardless of the system size.

Metropolis MC simulations of an ideal gas were per-
formed in the Gibbs ensemble without shell particles us-
ing Nt attempted trial moves. For each trial, particle
or volume transfers were chosen with equal probability.
The acceptance criteria for volume and particle transfers
were performed as described in Sections IVA and VIA,
respectively. The ratio of microstate probabilities for the
volume and particle transfers was performed with fixed
N1 or V1, respectively. Because the trials keep one of
these variables fixed while changing the other, we did not
use the microstate probabilities for V1 at anyN1 or forN1

at any V1. Error bars and histograms were obtained as
described in Section IIIA. These MC simulation results
were statistically equivalent to the expected theoretical
results, as shown in Figs. 9-11.
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B. Gibbs ensemble with both volume and particle
transfers between two systems with shell particles

A shell particle is now introduced into each system
with PBCs, as discussed in Sections IVB and VIB.
Hence, N1 ∈ [1, N − 1], while both N and V for this
composite system are constant. In this case, the parti-
tion function is

Q∗
G =

V

ΛdN

N−1∑
N1=1

∫ V

0

dV1
V N1−1
1

(N1 − 1)!

(V − V1)
N−N1−1

(N −N1 − 1)!

=
1

ΛdN

N−1∑
N1=1

V N

(N − 1)!
=

V N

ΛdN (N − 2)!
,

(89)

where there are N −1 identical terms in the last summa-
tion and we have again made use of Eq. 26. The above
also indicates that the probability of the first system hav-
ing N1 particles, regardless of its volume, is

P ∗(N1) =
1

Q∗
G

V N

ΛdN (N − 1)!
=

1

N − 1
, (90)

which is independent of N1. This is shown in Fig. 9.
Switching the order of the summation and integral in
Eq. 89, we also have that

Q∗
G =

V N−1

ΛdN (N − 2)!

∫ V

0

dV1, (91)

which implies that the probability density of the volume
of the first system, regardless of its particle number, is
also uniform since

P ∗(V1) =
1

Q∗
G

V N−1

ΛdN (N − 2)!
=

1

V
. (92)

The above distribution is the same as the no shell particle
case and is also shown in Fig. 10.

The ensemble average of N1 is equal to

⟨N1⟩∗ =

N−1∑
N1=1

N1P
∗(N1) =

1

N − 1

N−1∑
N1=1

N1 =
N

2
. (93)

Since the probability density of the volume is uniform
from 0 to V , we also have that

⟨V1⟩∗ =
V

2
. (94)

Both of these averages are the same as for the no shell
particle case, and we again find that ⟨V1⟩∗/⟨N1⟩∗ =
V/N = ⟨V2⟩∗/⟨N2⟩∗. However, unlike the no shell parti-
cle case, we found in Section IVB for a fixed value of N1

that ⟨V1⟩∗ = N1V/N . Hence, when particle transfers are
then allowed, we find that ⟨V1/N1⟩∗ = V/N = ⟨V2/N2⟩∗.
While this equality of the two averages was also obtained

for the no shell particle case, the values of these averages
are always equal to V/N , unlike the no shell particle case.
On the other hand, we may evaluate the ensemble av-

erage density of the first system by using Eq. 37, which
must exclude N1 = 1 because division by zero is an un-
defined operation. For N1 ≥ 2, the ensemble average of
the density of the first system is given by

⟨ρ1⟩∗ =

∑N−1
N1=2

N1(N−1)
V (N1−1)P

∗(N1)∑N−1
N1=2 P

∗(N1)

=
N − 1

V (N − 2)

N−1∑
N1=2

N1

(N1 − 1)

=
N − 1

V

[
1 +

1

N − 2

N−1∑
N1=2

1

N1 − 1

]
,

(95)

with a corresponding result for ⟨ρ2⟩∗. Similar to the no
shell particle case, ⟨N1⟩∗/⟨V1⟩∗ = ⟨N2⟩∗/⟨V2⟩∗ = N/V
for all system sizes and ⟨ρ1⟩∗ = ⟨ρ2⟩∗, although the den-
sities do not equal N/V except in the thermodynamic
limit. In addition, with βp1 = N1/V1, we find because of
the allowed particle transfer that ⟨βp1⟩∗ = ⟨βp2⟩∗, with
N1, N2 ≥ 2.
Metropolis MC simulations of an ideal gas were per-

formed in the Gibbs ensemble with shell particles using
volume and particle transfers as described in Sections
IVB and VIB, respectively. The MC simulations with
a shell particle in the Gibbs ensemble with volume and
particle transfers were statistically equivalent to the ex-
pected theoretical results, as shown in Figs. 9 and 10.
Note when determining ensemble averages of the density,
states with only the shell particle present in the system
were excluded from the running averages as discussed af-
ter Eq. 95.

VIII. CONCLUSIONS

We have investigated the use of a shell particle in
the canonical, isothermal-isobaric, grand canonical, and
Gibbs ensembles using both theory and Metropolis MC
simulation for an ideal gas. To our knowledge, shell parti-
cles have not been previously introduced into any of these
ensembles, with the exception of the isothermal-isobaric
ensemble. We also considered how various ensemble av-
erage properties, both with and without a shell particle,
approached their theoretically expected thermodynamic
limits. Understanding the system size dependencies of
these averages could help in extrapolating the results of
Metropolis MC simulations of small systems to the limit
of infinite system size, as needed for precise comparison
to experimentally measured macroscopic properties.
For systems in which the volume is fixed, such as in

the grand canonical ensemble and the Gibbs ensemble
with particle transfer only, the use of a shell particle re-
sults in a lower bound on the density of the system. This
is in contrast with non-shell particle systems where the
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zero particle states have a finite probability and may con-
tribute to ensemble averages. Such zero particle states
may also have important implications in flat-histogram
simulations in the grand canonical ensemble when the
density of the vapor is low,32 which may be the subject
of future work.

Ensemble averages presented in this article also ex-
clude those states in which division by zero resulted in
an undefined operation. This includes ensemble averages
with division by numbers of particles in cases without
shell particles in Eqs. 47, 67 and 88, as well as the shell
particle case for Gibbs ensemble average density with
both volume and particle transfers in Eq. 95. We em-
phasize that these are averages not typically considered,
and we are not aware of any other way to handle such
cases.

Moreover, for the complete Gibbs ensemble with both
particle and volume transfers, the shell particle may serve
to eliminate an instability that can arise for simulations
of a non-ideal fluid. In the Gibbs ensemble, when there is
a non-zero probability of one of the systems having zero
particles, the volume of this zero-particle system may be
reduced to infinitesimal amounts due to the absence of
particles. With both the volume near zero and containing
no particles, the re-insertion of a particle with excluded
volume can then prove difficult in a simulation, as the
volume first needs to fluctuate to a large enough size in
order to accommodate a particle. Such an instability
typically arises for Gibbs ensemble simulations near the
critical point.25 The use of shell particles with excluded
volume should prevent the sampling of such states in a
simulation, thereby improving the estimates of the var-
ious phase diagrams obtained with the Gibbs ensemble.
This potential benefit of a shell particle requires further
study in non-ideal systems.

In this article, we studied the ideal gas because it
yielded closed-form expressions that we validated with
fast Monte Carlo simulations and systematically com-
pared results with and without shell particles. Despite
its simplicity, the ideal gas represents an important start-
ing point for investigating the impact of the shell parti-
cle. Unfortunately, the impact of the shell particle on
computed properties of non-ideal fluids, such as critical
properties, surface tension, and phase equilibrium, can-
not be investigated using the ideal gas. Examining other
properties and fluids in the current context will be the
focus of future work.

IX. SUPPLEMENTAL ONLINE MATERIAL

The Supplemental Online Material contains the follow-
ing:

• ideal gas mc.ipynb includes all Python code used in
this work for the MC simulations and generation of
figures.

• ideal gas mc.html is a read-only export of

ideal gas mc.ipynb that may be more convenient
to open.

• fig data.zip contains data for all figures in the
comma-separated value format.
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