
Monte Carlo molecular simulations with FEASST version 0.25.1
Harold W. Hatch,1, a) Daniel W. Siderius,1 and Vincent K. Shen1

Chemical Informatics Research Group, Chemical Sciences Division, National Institute of Standards and Technology,
Gaithersburg, Maryland 20899-8380, USA

(Dated: 5 September 2024)

FEASST is an open-source Monte Carlo software package for particle-based simulations. This software,
which was released in 2017, has been used to study phase equilibrium, self-assembly, aggregation or gelation
in biological materials, colloids, polymers, ionic liquids and adsorption in porous networks. We highlight some
of the unique features available in FEASST, such as flat-histogram grand canonical ensemble, Gibbs ensemble,
and Mayer-sampling simulations with support for anisotropic models and parallelization with flat-histogram
and prefetching. We also discuss how the challenges of supporting a variety of Monte Carlo algorithms were
overcome by an object-oriented design. This also allows others to extend classes, which improves software
interoperability, as inspired by LAMMPS classes and user packages. This article describes version 0.25.1
with benchmarks, compilation instructions, and introductory tutorials for running, restarting and testing
simulations, user guidelines, software design strategies, alternative interfaces and the test-driven development
strategy. (This is an author reprint of https://doi.org/10.1063/5.0224283).

I. INTRODUCTION

Since the inception of Monte Carlo (MC) simu-
lations over seventy years ago,1 MC software cur-
rently available to the molecular simulation com-
munity includes but is not limited to MUSIC,2

BOSS,3 MCPRO,3 Towhee,4 Etomica,5 DL MONTE,6

Cassandra,7 Faunus,8 RASPA,9 GOMC,10 BRICK-
CFCMC,11 SIMONA,12 ms2,13 ESPResSo,14 MCCCS-
MN,15 and the Free Energy and Advanced Sampling Sim-
ulation Toolkit (FEASST).16,17 Despite the number of
available MC software, none have usage metrics18 within
an order of magnitude of popular molecular dynamics
(MD) software such as GROMACS19 and LAMMPS.20,21

The aim of FEASST development is to make an MC soft-
ware package that is as easy to use and customize as
LAMMPS.

FEASST is an open-source MC molecular simula-
tion software package available at https://pages.nist.
gov/feasst with 76 and 22 thousand lines of C++ source
and automated tests, respectively, to implement the
following MC methods.16 Metropolis,1 Mayer-sampling
(MSMC),22 Wang-Landau23 or transition-matrix24 MC
may be performed in the microcanonical, canonical
(NV T), isothermal-isobaric, grand-canonical (µV T),
semi-grand, Gibbs25 or expanded ensembles.26 Inter-
action potentials include square well, Kern-Frenkel,27

Lennard-Jones (LJ), Mie, (screened) Coulomb, precom-
puted tables and the Ewald sum. Cell and neighbor
lists are also implemented. Bonded potentials include
rigid, square well, harmonic, and FENE28 bonds and an-
gles with TraPPE29 and Ryckaert-Bellemans dihedrals.30

Particles may be confined by hard shapes such as slabs,
cylinders, spheres, and supertoroids, and the union or in-
tersection of multiple shapes. Confined fluids may also
be simulated with table and rigid site potentials with 2D

a)Electronic mail: harold.hatch@nist.gov

Ewald corrections.31 A large assortment of trial moves,
such as translation, rotation, crankshaft, pivot, rigid
cluster, alchemical transformation, (dual-cut) configu-
rational bias (CB and DCCB),32,33 aggregation volume
bias,34,35 reptation and Jacobian-Gaussian branching36

have been implemented.
FEASST17 has been used previously to study colloids,

porous networks, ionic liquids, and water and biological
molecules. Studies of assembly and gelation of colloids
include trimers,37,38 cubes,39 binary superlattices,40,41

cylinders42,43 and supertoroids.44 FEASST has also been
used to study the assembly of porous networks,45 en-
tropy correlations,46 Henry’s law constants,47 and water
adsorption48 in metal-organic frameworks (MOFs). Ad-
ditional applications include coarse-grained simulations
of monoclonal antibodies,49 ionic liquids,50 and the cal-
culation of thermodynamic derivatives51 to predict struc-
tural quantities,52 virial coefficients53 and explore phase
the behavior using Gaussian process regression.54 Exam-
ple results obtained with FEASST are highlighted and
benchmarked in Section II with a summary of 54 Python-
based tutorials available online.
Benchmark studies of two different kinds of MC-

specific parallelization methods were performed with
FEASST using OpenMP. The first method simultane-
ously simulates different parts of the macrostate distri-
bution with transition-matrix MC simulations.55,56 The
second method simultaneously prefetches multiple at-
tempted trials from the same configuration, and recon-
structs the serial Markov chain.57

In Section III, we describe all required steps to run a
bulk LJ simulation in the NV T ensemble with FEASST.
This example illustrates the ease with which FEASST
may be compiled, run, restarted, and tested and pro-
vides enough information for readers to get started with
the more complex and numerous tutorials present in the
larger online documentation that is summarized in Sec-
tion IIK.
One of the major FEASST development challenges

was to support not only Metropolis acceptance criteria,

2

but also flat-histogram Monte Carlo (FHMC), MSMC,
Widom insertion and deletion, Henry’s law constant and
isosteric heat of adsorption calculations.47 FHMC sim-
ulations require flexibility in both the implementation
of macrostates and bias functions to enable simulations
in µV T and expanded ensembles using Wang-Landau,23

and transition-matrix and their combination58,59 with
parallelization.60 In addition, MSMC differs from many-
particle simulations because only two particles are sim-
ulated for the second virial coefficient (B2) without
periodic boundary conditions (PBCs). MSMC allows
hard particle overlap, old configurations are not con-
sidered in trial acceptance, CB flexibility is performed
differently,49,61 and the lack of PBCs makes Ewald and
long range van der Waals corrections unnecessary. The
challenges associated with supporting Metropolis MC,
FHMC and MSMC acceptance criteria in the same soft-
ware are overcome by an object-oriented design described
in Section IV that allows modular trial acceptance crite-
ria that are further extendable to address future chal-
lenges.

The nomenclature of FEASST classes is also summa-
rized in Section IV for two reasons. The first reason
is that a basic understanding of FEASST classes allows
users to anticipate the optional arguments available in
simulation input files. The second reason is that the
object-oriented design enables other researchers to cus-
tomize FEASST for specific use cases via a plugin archi-
tecture, with the option of contributing code to the user
community. Due to the wide variety of specialized sam-
pling techniques in MC, many research groups currently
use in-house special purpose MC software. FEASST
provides an alternative for research groups to create
FEASST plugins for their specific modifications as in-
spired by LAMMPS user packages. This extensibility is
enabled by modern software design such as the factory
and visitor patterns,62 as discussed in Section IVE.

Another major FEASST development challenge was to
enable periodic saving or writing of the execution state to
file (i.e., checkpointing via serialization) so that the MC
simulation may be restarted after interruption (i.e., de-
serialization). Restarting allows users to request higher
priority or shorter queues on high performance computer
(HPC) clusters by breaking a longer simulation into a
series of shorter simulations. Most online FEASST tu-
torials include restarting options. Furthermore, user-
contributed FEASST classes automatically include con-
venient (de)serialization functions described in tutorials.

This article ends with a discussion of alternative inter-
faces, customization, testing and licensing in Section VI.
FEASST may be used as a library in C++ and Python
as well as a client-server mode, which increases the inter-
operability of this toolkit with other software. Software
interoperability may also be facilitated by establishing
interfaces to other software with user plugins. Compar-
isons with published results and the National Institute of
Standards and Technology (NIST) Standard Reference
Simulation Website (SRSW)63 fuel the test-driven devel-

opment strategy described in this article. Finally, the li-
cense of FEASST is discussed before concluding remarks
in Section VII.

II. EXAMPLE AND BENCHMARK SIMULATIONS
USING FEASST

Here, example simulations are described to highlight
some of the unique features available in FEASST. This
includes examples of µV T FHMC of LJ, SPC/E wa-
ter, Kern-Frenkel patchy particles, patchy trimers and
TraPPE n-octane. FHMC methods bias the simulation
to explore macrostates that are not visited frequently.
These types of simulations are useful for sampling sys-
tems under conditions that include a transition state,
such as those in vapor-liquid equilibrium. In addition,
MSMC simulations compute B2 for LJ particles with
temperature extrapolation and atomistic protein-protein
interactions with implicit-solvent. Finally, µV T FHMC
is used to compute LJ adsorption in a repulsive porous
network and CO2 adsorption in the ZIF-8 adsorbent. Ex-
ample simulations were run with FEASST version 0.25.0,
and the changes in version 0.25.1 were made partially in
response to reviewers and did not affect the results shown
here. Benchmark central processing unit (CPU) clock
time is reported for HPC nodes with dual Intel® Xeon®

Silver 4216 CPUs with a total of 32 processors per node
at 2.10 GHz base frequency (see the disclaimer at the end
of Section VID). If a simulation reports a clock time of
1 h on 32 processors, then each process spent an hour,
resulting in a total of 32 processor-hours.

A. Flat-histogram simulation of a bulk LJ fluid

In this example, the vapor-liquid equilibrium of a bulk,
single-component LJ fluid of diameter σ and attractive
well ϵ is investigated using µV T FHMC in cubic PBCs
of length L = 8σ with a constant chemical potential, µ.
In this ensemble, the macrostate of FHMC is the number
of fluid particles, N . A single simulation was parallelized
over 32 processors60 in an HPC node to compute the
high temperature, kBT/ϵ = 1/(βϵ) = 1.5, macrostate
distribution shown by the red line in Fig. 1, where kB
is the Boltzmann constant. The macrostates were dis-
tributed across the parallel processes with an exponen-
tial weighting factor.63 At this supercritical temperature,
there is a single maximum in the macrostate probability.
This simulation was run for less than 3.5 h on 32 proces-
sors. For more simulation details, see the fourth tutorial
in the flat histogram plugin. Throughout this article,
the names of FEASST classes, arguments and plugins use
this typeset.
A second simulation at a lower temperature, kBT/ϵ =

0.7, was parallelized with two HPC nodes with 32
cores each for 16 hours. The first node computed the
macrostate distribution up toN = 375 particles using ag-

3

FIG. 1. Natural logarithm of the probability, lnΠ, of the
number of LJ particles, N , obtained by µV T FHMC with L =
8σ. The red line shows a higher temperature of kBT/ϵ = 1.5
reweighted to βµ = −2.227, and the blue line shows a lower
temperature of kBT/ϵ = 0.7 reweighted to βµ = −6.257 for
equilibrium between the vapor and liquid phases.24

gregation volume bias (AVB) displacements biased about
a distance of 0.9σ to 1.375σ with AVB2,34,35 AVB4,48

and insertions and deletions with AVB64, in addition to
standard insertion, deletion and translation moves with
a tunable maximum displacement. The second node sim-
ulated N from 375 to 475 using ten DCCB steps with a
reference potential cutoff at σ. The reference potential
utilized a cell list. At this subcritical temperature, the
chemical potential, βµ = −6.257, may be reweighted to
the equilibrium condition of equal probability of vapor
and liquid phases. One of the transition states shown in
the inset of Fig. 1 for N = 200 is a slab of dense fluid.65

These simulations ran for 16 h on two HPC nodes with
32 processors. For more simulation details, see the tenth
tutorial in the flat histogram plugin.

B. Flat-histogram simulation of bulk SPC/E water

The Ewald summation allows FEASST to model long-
range charged interactions, as exemplified by the use of
FHMC of the fixed point charge SPC/E water66 model
shown in Fig. 2. Fourier-space contributions for each
particle are stored separately to allow for the efficient
calculation of the change in energy with single-particle
perturbations. Ewald vectors, k, were truncated at a
squared maximum of k · k = 38 using a screening length
of α/L = 5.6.63 At a temperature near the critical point,
T = 525 K, as shown by the red line in Fig. 2, standard
rigid-body translation, rotation, insertion and deletion
trials reasonably converge the macrostate probability dis-
tribution. This simulation was run for 22 h on 32 proces-
sors. For more simulation details, see the fifth tutorial in
the flat histogram plugin.

FIG. 2. Natural logarithm of the probability, lnΠ, of the num-
ber of SPC/E water molecules, N , obtained by µV T FHMC
with L = 20 Å. The red line shows a higher temperature
of T = 525 K reweighted to βµ = −8.145, and the blue
line shows a lower temperature of T = 300 K reweighted to
βµ = −15.253 for equilibrium between the vapor and liquid
phases.24

To facilitate the convergence of the simulations at a
lower temperature of T = 300 K, shown by the blue line
in Fig. 2, additional trials were introduced. The lower
densities from 0 to 180 particles were run on an HPC
node with 32 processors for 48 h, while 180 to 296 par-
ticles were run on a second HPC node with the same
number of processors for 117 h. For the first node, stan-
dard translations, rotations, insertions and deletions were
performed. On the second node, ten DCCB steps were
used for insertion and deletion. The reference potential
was not simply a shorter cutoff. Instead, only the oxy-
gen sites were considered in order to account for the ex-
cluded volume. For the reference, the oxygen sites were
modeled as hard spheres with a diameter of 2.857 Å to
enable the efficient use of a cell list. DCCB33,63 greatly
improves the sampling and convergence of this simula-
tion. For more simulation details, see the tenth tutorial
in the flat histogram plugin.

C. Flat-histogram simulation of Kern-Frenkel patchy
particles

Anisotropic interaction models are also supported in
FEASST. The Kern-Frenkel27 model is an orientation-
ally dependent square well of diameter σ, well depth ϵ,
and a cutoff of 1.5σ, as illustrated in Fig. 3. At the
temperature of kBT/ϵ = 0.7, the free-energy barrier be-
tween the vapor and liquid phases is relatively small com-
pared to the previous results. That is because the simu-
lation is close to the critical temperature. Lower temper-
atures and smaller attractive coverage lead to complex
microstructures.38,67 This simulation was run for 1.14 h

4

FIG. 3. Natural logarithm of the probability, lnΠ, of the
number of Kern-Frenkel patchy particles, N , obtained by
µV T FHMC with L = 8σ, kBT/ϵ = 0.7 and βµ = −3.229
reweighted for equilibrium between the vapor and liquid den-
sity phases.24 Attractive patches placed on opposite poles of
the particle, shown in blue, cover 70% of the surface, with a
hemispherical region of no attraction, shown in red.

FIG. 4. Natural logarithm of the probability, lnΠ, of the num-
ber of patchy trimer particles, N , obtained by µV T FHMC
with L = 8σ, kBT/ϵ = 1/0.275 and βµ = −5.

on 32 processors. For more simulation details, see the
ninth tutorial in the flat histogram plugin.

D. Flat-histogram simulation of patchy trimer particles

In this example, the self-assembly of a patchy trimer
model37 is illustrated in Fig. 4. Each of the three beads
of diameter σ in the trimer form an equilateral trian-
gle of length σ. Only one of the beads has an attrac-
tive LJ potential with the similar bead on each of the
other trimers. Otherwise, all other interactions between

FIG. 5. Natural logarithm of the probability, lnΠ, of the
number of TraPPE united atom n-octane29 molecules, N ,
obtained by µV T FHMC with L = 45 Å, T = 350 K and
βµ = −12.417 reweighted to equilibrium between the vapor
and liquid phases.24

beads are purely repulsive with the Weeks-Chandler-
Andersen68 (WCA) potential shift and cutoff at rc/σ =
21/6. This trimer model is similar to colloids synthesized
and studied in experiment with a short range attractive
interaction due to surface roughness in a solution with
depletants.69,70

Because only one of the three beads is attractive,
trimers self-assemble into micellar structures at relatively
low temperatures. The attractive beads occupy the cen-
ter and the repulsive beads decorate the surface of the
micelle. The stability of these microstructures may be
reflected in lnΠ from µV T FHMC, shown in Fig. 4. For
N = 4 trimers, there is a maximum in lnΠ represen-
tative of a homogeneous vapor phase. There is a well-
defined minimum in the probability between N = 4 and
15 trimers, where N = 15 corresponds to the formation
of the first stable micelle. Another maximum is observed
during the growth of a second stable micelle. The simu-
lation was run for 96 h on 32 processors with N ≤ 100
(not shown in Fig. 4), For more simulation details, see
the eighth tutorial in the flat histogram plugin.

E. Flat-histogram simulation of TraPPE n-octane

FEASST also supports the CB regrowth of molecules
with intramolecular flexibility. In the example shown in
Fig. 5, the vapor-liquid equilibrium properties of TraPPE
n-octane29 are obtained at T = 350 K. The n-octane
molecules were regrown using four steps for each site with
a DCCB cutoff of 4.091 Å. In addition to rigid body
translations and rotations tuned by a maximum param-
eter, NV T ensemble trials also included regrowths of 1
to 4 atoms at either end of the molecule. Insertions and
deletions also utilized the same CB methods for the en-
tire molecule. Similar to Figs. 1 and 2, the stable vapor

5

FIG. 6. Equilibration of the density, N/V , of pure component
TraPPE united atom n-butane29 in the Gibbs ensemble with
T = 350 K, 512 total molecules and 2240 Å

3
total volume.

The symbols are blue for the liquid and red for the vapor with
the corresponding boundaries in the snapshots.

and liquid densities are separated by a number of tran-
sition states, including the slab-like configuration shown
in the inset. This simulation was run for 120 h on 32
processors. For more simulation details, see the eleventh
tutorial in the flat histogram plugin.

F. Gibbs ensemble simulation of TraPPE n-butane

FEASST also supports Gibbs ensemble simulations as
shown in Fig. 6. Multiple Configuration objects can
be simulated with volume and particle transfer between
them using CB. The interaction potentials in each config-
uration can be controlled and optimized independently,
and more than two configurations are supported. The
pressure is computed using the test volume method.71

This simulation was run for 0.44 h on 1 processor. For
more simulation details, see the second tutorial in the
gibbs plugin.

G. Temperature extrapolation of second virial coefficients
(B2) using MSMC

While the previous examples used µV T FHMC with
a variety of isotropic and anisotropic models, FEASST
also supports MSMC to compute B2 with a two parti-
cle simulation. Enabling the use of MSMC in the same
software as Metropolis and FHMC was a challenge be-
cause MSMC does not need to recompute the energy of
the old configuration, and the overlap between particles
which may typically be immediately rejected in Metropo-
lis MC is allowed in MSMC. The object-oriented design
of FEASST makes it easier to interchange Metropolis,
FHMC and MSMC acceptance criteria in a modular fash-

FIG. 7. Second virial coefficient, B2, of LJ particles obtained
from MSMC at kBT/ϵ = 1/(βϵ) = 1, and the color symbols
show extrapolation53 with Padé approximants of various or-

ders. The x symbol shows 3B2(βϵ=1)

2πσ3 = −2.535± 0.001, where
± indicates the standard deviation of the mean from 32 inde-
pendent simulations.

ion while re-using the same trial move implementation.
Fig. 7 shows the extrapolation of B2 of LJ particles using
MSMC at βϵ = 1 with a hard sphere reference potential
of diameter equal to the LJ σ parameter, as detailed in
Ref. 53 and also implemented in Ref. 72. In short,
the thermodynamic derivatives of the Mayer functions
with respect to β, to a given order, are averaged to en-
able Taylor-series extrapolation, which may be corrected
with Padé approximants. This simulation was run for
less than 5 min on 32 processors. For more simulation
details, see the first tutorial in the mayer plugin.

H. MSMC with atomistic proteins in implicit solvent

FEASST supports the use of MSMC to calculate B2 of
rigid atomistic proteins in implicit solvent73 as shown in
Fig. 8 for the lysozyme 4LYT protein databank (PDB)
structure.74 The pdb2pqr3075 software converted PDB to
PQR files with PARSE76 charges and PROPKA77 proto-
nation states and Autodock4 parameters78 assigned with
the coarse grain pdb module in pyfeasst. These sim-
ulations were run for 24 h on 32 processors. For more
simulation details, see Ref. 79 and the eighth tutorial in
the mayer plugin.

I. Confinement of LJ in a WCA porous network

Simulations in confinement are also possible in
FEASST with hard shapes as well as rigid interaction
sites. For example, an LJ fluid may be confined inside
of a repulsive porous network that is carved from a cu-

6

FIG. 8. Second osmotic virial coefficient, B2, of a rigid atom-
istic protein model of lysozyme (PDB 4LYT, pH 6, 14.315
kDa, 298.15 K) with implicit solvent computed over a vari-
ety of ionic strengths, I, using MSMC with a σ = 30 Å hard
sphere reference potential. Error bars are standard error of
the mean of 32 independent simulations.

bic lattice of rigid sites interacting with the LJ fluid us-
ing a purely repulsive WCA potential. The porous net-
work has two pores in each dimension (eight total pores)
connected by narrow channels, as described previously.55

The volume, V = (9σ)3 in PBCs was held fixed and the
LJ particles were inserted and deleted with µV T FHMC.
Trial moves included translation, AVB2,34,35 AVB448 and
AVB insertion and deletion64 in addition to standard in-
sertion and deletion. This simulation was run for 1 h
on 32 processors with N ≤ 64 (not shown in Fig. 9).
For more simulation details, see the first tutorial in the
confinement plugin.55

J. Adsorption of CO2 in ZIF-8 using µV T FHMC

FEASST can also compute an adsorption isotherm.
In this example, the amount of TraPPE80 CO2 in the
metal-organic framework (MOF) ZIF-881 is determined
as a function of pressure using µV T FHMC.82 The rigid
MOF may be treated as a single rigid particle, while only
CO2 is subject to trial translations, rotations, insertions
and deletions. The FHMC macrostate is the number of
CO2 molecules, N , and the converged lnΠ determines the
average loading in the MOF, i.e., ⟨N⟩. The relationship
between µ and pressure, p, is obtained by an indepen-
dent simulation of the bulk adsorbate fluid at the same
temperature of the confined simulation, after which the
N = 0 state of the bulk fluid is related to an ideal gas
reference state. The N = 0 state for a fluid adsorbed
in the MOF (or in any confinement) is not equivalent to
an ideal gas; the N = 0 state can, however, determine
the grand potential free energy of the system at some µ

FIG. 9. Natural logarithm of the probability, lnΠ, of the
number of LJ particles, N , shown in blue, obtained by µV T
FHMC with βϵ = 1/0.3 and βµ = −3.6333. The rigid porous
network, shown in gray, was carved from a cubic lattice of
purely repulsive WCA particles to form eight pores with con-
necting channels.55 The inset shows maximums in the proba-
bility when a successive number of pores are filled, similar to
maximums from the self-assembled structures shown in Fig. 4.

relative to that of the MOF.59,82 The bulk and confined
simulations were run for 2 h on 32 processors. For more
simulation details, see the second and third tutorials in
the confinement plugin and earlier work that describes
the system setup.82

K. Summary of additional tutorials in the online
documentation

Including the tutorials highlighted above, the online
documentation contains a total of 54 examples in the
section titled Tutorials that span a range of different MC
methods and interaction potentials. Throughout this ar-
ticle, online documentation sections are underlined. Most
online tutorials use pyfeasst to write the text interface
files, run the simulations and post-process them. The
use of pyfeasst is optional and allows the tutorials to be
run either locally or on an HPC with the “run type” flag,
as part of an automatic testing process. Many tutorials
support the use of the “help” flag to describe the op-
tional arguments and their default values. To use these
scripts on HPC resources, pyfeasst assumes a SLURM
queue with optional flags given by “queue flags.” Often
the tutorials have unusually short hours terminate so
that the simulation will restart, which allows for quick
identification of restart errors. We now summarize the
tutorials currently available online.

• Single-site LJ potentials are used to demonstrate
NV T , µV T , isothermal-isobaric, Gibbs, and tem-
perature expanded ensembles and rigid cluster

7

FIG. 10. (Left) Natural logarithm of the probability, lnΠ, of the number of CO2 molecules, N , adsorbed into the ZIF-8 MOF,
shown in the snapshots as gold for N = 40 (1.8 mmol/g) and N = 175 (8 mmol/g), at a temperature of 303 K. (Right) Loading
of CO2 as a function of pressure, p, with results from FEASST and previously published results.82

moves.

• FHMC simulation tutorials also consider the ideal
gas, RPM,83 hard sphere and EPM2 CO2.

84

Other FHMC tutorials include CB,32 aggrega-
tion volume bias,35 efficiency comparisons with
parallelization57 and expanded grand canonical en-
semble simulations.50 Semi-grand ensemble simula-
tions with FHMC include both a binary LJ simu-
lation and a binary CO2 and N2 mixture.

• Customization tutorials include user-defined poten-
tials with tables, custom pair-wise models, user-
derived periodic analysis and one-time actions.

• MSMC simulations are demonstrated for patchy
trimers, TraPPE ethane, Kern-Frenkel patchy par-
ticles, rigid-body proteins and coarse-grained anti-
body models.

• Tutorials with CB simulate freely-jointed chains
and 5-mer and 20-mer linear chains. CB examples
of angle and branching are also available. Further-
more, temperature extrapolation of the radius of
gyration of a linear chain is demonstrated.

• Tutorials in confinement include slab, cylindrical
and spherical confinements, as well as building cus-
tom confinements with unions and intersections of
the above shapes.

• Comparisons with small-angle scattering using the
FFTW library is provided, as well as an example
for post-processing such calculations from existing
trajectories with both simple hard sphere models
and coarse-grained antibody models.

• Other tutorials include parallelization with
prefetch,57 anisotropic tabular potentials,42

netCDF trajectories and block average analysis of
correlated data.85

III. GETTING STARTED WITH FEASST SIMULATIONS

Using FEASST to performMC simulations begins with
compiling the “fst” and “rst” executables. The syntax
of input files to run MC simulations is then discussed,
including a description of file formats to define particles
and input initial configurations. Energy calculations of
reference configurations and restarting simulations from
checkpoint files are also introduced. Finally, an example
of an input file to perform DCCB33 insertion and deletion
of SPC/E water molecules is explained.

A. Compiling executables and software dependencies

FEASST is designed for Linux command line environ-
ments found in HPC clusters. Text 1 shows the typ-
ical Bourne-Again SHell (Bash) shell compilation com-
mands for FEASST. Throughout this article, command
line examples assume the use of Bash, but FEASST is
also compatible with many other shells. Dependencies
include a C++ compiler such as g++, CMake, Git and
Python 3.86–89 This is demonstrated on the first line of
Text 1 for a variety of package management tools found
in Ubuntu, RedHat, Fedora, Rocky, AlmaLinux, Mac or
other operating systems. FEASST is designed for min-
imal required dependencies, and optional dependencies
are placed in optional plugins to simplify compilation for
most users.

Throughout this tutorial, FEASST is placed in the
home directory given by the variable $HOME, as shown
on line 2, but FEASST may be compiled anywhere

8

TEXT 1. Command line compilation of FEASST executables
“fst” and “rst.”

1 #[apt,yum,dnf,brew] install g++ cmake git python3

2 cd $HOME
3 git clone https://github.com/usnistgov/feasst.git

4 mkdir feasst/build && cd $_
5 git checkout v0.25.1

6 cmake ..

7 make install -j$(nproc)
8 #pip install jupyter matplotlib pandas scipy

../pyfeasst

by replacing the $HOME variable with a different one.
Git obtains and manages the version of source code
in lines 3 and 5, respectively, and are optional if the
user instead downloads the v0.25.1 tag manually from
GitHub.90 In line 4, an out-of-source build directory de-
couples the source code from the compiled objects. Line
6 uses CMake to search for required dependencies us-
ing “$HOME/feasst/CMakeLists.txt,” which includes a
number of options for additional dependencies such as op-
tional FEASST plugins, GoogleTest, OpenMP, Ccache,
Sphinx, SWIG, GCOV, FFTW, pybind11, MPI and
NetCDF. On line 7, the “make” command compiles the
“fst” and “rst” executables, which read input and check-
point files, respectively. These two executables should be
found in the directory “$HOME/feasst/build/bin.” The
“make” command is parallelized with the optional “-j”
flag.

The last line installs optional Python packages that are
required by the online tutorials, but not by the examples
in this article. It is important to provide pip a path
to the specific pyfeasst directory in FEASST to ensure
that the versions match. If “../” is left out of line 8 in
Text 1, which assumes that the command is given from
the directory “$HOME/feasst/build/,” pip may find a
PyPI version of pyfeasst that may not work with the
specific FEASST version that was installed locally.

B. FEASST simulation text file example

MC simulations are performed by a text input to the
“fst” executable with the command

$HOME/feasst/build/bin/fst < script.txt

where the contents of script.txt provide simulation in-
structions to the “fst” executable. An example script.txt
is given in Text 2, in which FEASST computes the
average potential energy of 500 LJ particles in cubic
PBCs at a fixed density, ρσ3 = 0.003, and temperature
kBTϵ = 0.9,91 with about 5 s of run time.
Lines with a first symbol of “#” are ignored and serve

as comments. Otherwise, every line begins with the name
of a FEASST class. In line 2, MonteCarlo prepares

TEXT 2. FEASST input file for an MC simulation of LJ par-
ticles to reproduce the SRSW-reported result for the canoni-
cal ensemble average energy.

1 # comments begin with the # symbol

2 MonteCarlo

3 RandomMT19937 seed 1572362164

4 Configuration cubic_side_length 55.0321208149104

particle_type0 /feasst/particle/lj.fstprt

5 Potential Model LennardJones VisitModel

VisitModelCell min_length max_cutoff

6 Potential VisitModel LongRangeCorrections

7 ThermoParams beta 1.111111 chemical_potential0 -1

8 Metropolis

9 TrialTranslate weight 1 tunable_param 2

10 Checkpoint checkpoint_file lj_checkpoint.fst

num_hours 0.0001

11 Tune

12 CheckEnergy trials_per_update 1e4 tolerance 1e-8

13 TrialAdd weight 2 particle_type 0

14 Run until_num_particles 500

15 RemoveTrial name TrialAdd

16 Run num_trials 1e5

17 RemoveModify name Tune

18 Log trials_per_write 1e4 output_file lj.csv

19 Energy trials_per_write 1e4 output_file lj_en.csv

20 Movie trials_per_write 1e4 output_file lj.xyz

21 Metropolis num_trials_per_iteration 1e4

num_iterations_to_complete 1e2

22 Run until_criteria_complete true

an MC simulation. Throughout this article, the names
of FEASST classes, arguments, and plugins use this
typeset. Line 3 of Text 2 begins with RandomMT19937,
which is the name of a class that uses the Mersenne
Twister pseudo-random number generator.92 Unlike in
the previous line, the name of the class is followed by an
optional argument pair of seed and a number to input
the value of the seed. Each argument pair is separated by
a space, and first has the name of the argument and then
the value of that argument (i.e., a dictionary structure).
Every non-comment or non-empty line begins with the
name of a FEAST class, followed by one or more space-
separated pairs of arguments, resulting in an odd number
of space-delimited character strings.
Class arguments may be found in the Text Interface

section of the FEASST website.16 As shown in Fig. 11,
the arguments of RandomMT19937 are the same as
Random, and clicking on the link for Random leads to a
description of the seed argument. RandomMT19937 de-
rives from the Random base class, as indicated by the
text “class RandomMT19937 : public feasst::Random.”
Because RandomMT19937 is one of the simplest classes in
FEASST, it is the easiest to screen capture and show in
Fig. 11 in comparison with the more informative doc-
umentation for other FEASST classes. Awareness of
FEASST object-oriented class structure helps users in-
tuit arguments available to a class, and will be discussed
in Sections IV.

9

FIG. 11. Online documentation shows that RandomMT19937

is a derived class of Random, and accepts the arguments of
Random, such as seed. This shows why the object-oriented
design is important to FEASST users.

In line 4, Configuration has two pairs of arguments.
Multiple argument pairs may appear in any order with-
out affecting the simulation. The first pair initializes an
empty Domain of cubic shape for a given PBC length,
L, which anticipates the addition of 500 particles for a
target density of ρσ3 = 0.003. Manually typing many
decimal places is not necessary in FEASST tutorials that
use Python formatted strings to generate the input file.

The user must input values with consistent units. For
example, the distance units of PBC length, L, should
correspond to the same units for the σ parameter of LJ
and the positions of the sites. Units of energy should
be consistent with the ϵ parameter and the inverse of
β = 1

kBT . Units of pressure are energy per volume. In
the special case of Coulomb interactions, the distance
units are assumed to be Å, and energy units are kJ/-
mol and elementary charges. For charge interactions,
the PhysicalConstants can be customized as an ar-
gument in the Configuration class. In addition, the
physical constants pyfeasst module provides physical
constants for convenience during unit conversion. An
example of this can be found in the SPC/E tutori-
als in the monte carlo plugin, where the inverse tem-
perature is converted from units of inverse Kelvin to
mol/kJ. The tenth tutorial in the flat histogram plu-
gin for SPC/E also includes a detailed post processing of
macrostate distributions, including unit conversions for
density and pressure. In addition, the sixth tutorial in
the flat histogram plugin contains an example charge
conversion for the RPM model to compare with the re-
sults of Ref. 50.

The second argument pair in line 4 defines a type of
particle that may exist. No actual particles are physi-
cally added to the Configuration with this argument.
The particle type index of 0 is given at the end of the
argument particle type0 for the first type of particle
defined. FEASST counts from zero following the con-
ventions of C++ and Python. A second particle type
would be defined with the argument particle type1 for
a particle type index of 1. The value of the second ar-
gument pair, “/feasst/particle/lj.fstprt” is the path to a

file that describes an LJ particle, as discussed in Sec-
tion III C. The “lj.fstprt” file informs FEASST that par-
ticles of type 0 are represented by a single interaction
site and inputs the parameters ϵ = σ = 1 and rc = 3,
where rc is the interaction cut off distance. The charac-
ters “/feasst” in a FEASST input file are always replaced
by the base directory of the FEASST compilation. For
example, if FEASST was compiled in “$HOME/feasst”
then “/feasst” would be replaced with “$HOME/feasst”
automatically.

Interactions between sites are defined by lines 5
and 6 using the Potential class. Line 5 initializes
the LennardJones interaction between sites. In this
case, the Model argument of Potential takes a de-
rived class name of Model as the value. Similarly, the
VisitModel argument of Potential initializes a cell list
with VisitModelCell for low density simulations with
the cut off as the minimum cell size. Line 6 adds
LongRangeCorrections by assuming a unit radial dis-
tribution function beyond the cutoff distance.93,94

Lines 7 − 12 enable the NV T ensemble MC simula-
tion of the LJ particles. Thermodynamic parameters
are input by the ThermoParams class in line 7. The
chemical potential, µ, is input with an index correspond-
ing to the particle type. Line 8 initializes Metropolis
acceptance. We recommend generating FEASST input
files with Python formatted strings to input β = 1/0.9
to maximum precision, as done in the online tutorials,
rather than manually inputting 1.111111 without enough
decimal places as done in Text 2 to simply keep line 7 on
one line in this article’s double column format. Line 9 ini-
tializes a translation trial move, TrialTranslate with a
given weighted probability to attempt the Trial, and a
Tunable maximum displacement of 2 in each dimension.
Line 10 writes a Checkpoint file every num hours that
may restart a simulation, as described in Section III E.
The num hours is small in this example for illustrative
purposes, and should be larger for production simula-
tions. Tune changes the maximum displacement parame-
ter to reach a target acceptance. Tune is specified without
arguments and uses the default class argument to adjust
tunable parameters every 103 trial moves of a given trial
type. On line 12, CheckEnergy compares the total po-
tential energy obtained from a series of energy changes
over 104 trials to the total potential energy recalculated
from the entire Configuration, and stops the simulation
with an error if those total energies are not within 10−8.

Lines 13 − 15 randomly add the desired number of
particles. First, a Trial to add particles is introduced.
Then, the simulation is run with both TrialTranslate
and TrialAdd until 500 particles are present. Finally,
TrialAdd is removed to re-establish the NV T ensem-
ble. Line 16 equilibrates with 105 trials while adjusting
the tunable maximum displacement parameter, and line
17 removes Tune to obey detailed balance in production
simulations with a fixed maximum displacement. Lines
18 − 20 initialize Log, Energy and Movie, all of which
are FEASST Analyze classes that periodically output to

10

files. Line 21 defines the production simulation to be 102

iterations of 104 trial moves per iteration. Finally, line
22 instructs FEASST to run the production simulation
of 106 total trials.
The outputs from the three Analyze objects are in

comma-separated value (CSV) and XYZ-formatted files
described in Section IIID. While Log outputs the in-
stantaneous energy every 104 trials, Energy outputs the
ensemble-average that was accumulated every Trial.
Thus, Energy is more suitable for computing accurate
thermodynamic averages while Log is more suited toward
checking the current status of the simulation. Log also
prints Trial acceptance probabilities and Tunable pa-
rameters. Movie outputs the instantaneous Site posi-
tions in the XYZ format with a VMD95 script viewable
with the following command:

vmd -e lj.xyz.vmd

According to the SRSW,63 the average energy per par-
ticle at these conditions is ⟨U/N⟩SRSW = −2.9787 ×
10−2 ± 3.21 × 10−5, where ± corresponds to the 67%
coverage interval of the mean obtained from block aver-
ages of size 5 × 107 trials. In Text 2, the average exten-
sive energy output to the file named “lj en.csv” results in
⟨U/N⟩FEASST = −2.9821 × 10−2 ± 2.43× 10−4, which
is statistically equivalent to the SRSW within the 67%
confidence level.

The standard error of the mean from the block-
ing method85,96 is implemented as described in the
Accumulator class documentation and the Supporting
Information of Ref 55. In short, block standard devia-
tions are obtained by on-the-fly adjustment of block sizes.
The reported block standard deviation is the largest
block standard deviation among all block sizes that have
a minimum of ten blocks and a maximum of 26−1 blocks,
where 6 is the default value of the max block operations
argument in Accumulator. Further examples of block
analysis are also provided in the math plugin tutorial, al-
though it requires installation of the Python interface us-
ing SWIG. By default, not all block operations are stored
to avoid slowing down the simulations.

C. Particle files

In FEASST, particles represent atoms, molecules, col-
loids or coarse-grained models with a number of bonded
interaction sites. As in line 4 of Text 2, particle files
inform FEASST about the kind of particles allowed
in the Configuration, but do not add particles to
the Configuration. Instead, particles may be added
with TrialAdd, as illustrated in Text 2, or using the
Configuration argument add particles of type[i],
where [i] refers to the particle type to add. Site coor-
dinates may also be input with an XYZ file as described
in Section IIID. If no particles are present and there is
only one particle type, then the particles are added auto-

TEXT 3. FEASST particle file that describes a single-site LJ
particle with ϵ = σ = 1 and rc = 3 as found in the lj.fstprt
file in $HOME/feasst/particle.

1 # LAMMPS-inspired data file

2

3 1 sites

4

5 1 site types

6

7 Site Properties

8

9 0 sigma 1.0 epsilon 1.0 cutoff 3.0

10

11 Sites

12

13 0 0 0.0 0.0 0.0

matically. Otherwise, if more than one type of particle is
present, the order of particles in the XYZ file should be
all particles of the first type, all particles of the second
type, etc, as described in Section IIID.
An example particle file for a single-site LJ model is

shown in Text 3. Comments begin with the “#” char-
acter and may only be present at the start of the file.
The format is inspired by LAMMPS with major differ-
ences, as described in the online documentation section
Particle files and units. “Site Properties” are listed with
the type index starting from zero and then argument
pairs with names that depend upon the Model, such as
epsilon and sigma for LennardJones. The “Sites” have
five columns, beginning with the site index, the type of
the site and then three coordinates. Typically, the first
site is placed on the origin and used as a pivot point for
rotation in TrialParticlePivot when there are multi-
ple sites. It is recommended that units are listed in the
particle files when charge interactions are involved, such
as in “$HOME/feasst/particle/spce.fstprt.”

D. XYZ and reference configurations

The positions of all particles may be input directly into
Configuration using an XYZ-formatted file as shown in
Text 4 and 5 for the SRSW LJ reference configuration
4.63 The first line is the number of sites. The second
line begins with a placeholder for an optional value (such
as an order parameter or macrostate), followed by the
dimensions of the periodic cell. The last three numbers
in the second line refer to triclinic tilt factors xy, xz and
yz as described in the online documentation for Domain.
The remaining number of lines should match the number
of sites.
Text 5 shows a FEASST input file to compute the in-

stantaneous potential energy of the single configuration.
In this case, line 2 uses the Configuration argument
xyz file with a file name of “lj ref config.xyz” given in

11

TEXT 4. FEASST XYZ-formatted file for a single configu-
ration of 30 LJ particles to reproduce the fourth SRSW ref-
erence configuration energy. For brevity, the ellipsis on line 6
represents the coordinates for sites 4− 30.

1 30

2 -1 8.0 8.0 8.0 0.0 0.0 0.0

3 0 1.077169909511 -1.020988125886 -1.348259447733

4 0 0.1830884592213 -1.557698231574 -1.782405485883

5 0 -2.060346185437 3.92737827629 3.889555115290

6 ...

TEXT 5. Compute the potential energy of a single reference
configuration to high precision using this FEASST input file.

1 MonteCarlo

2 Configuration xyz_file lj_ref_config.xyz

particle_type0 /feasst/particle/lj.fstprt

3 Potential Model LennardJones

4 Potential VisitModel LongRangeCorrections

5 ThermoParams beta 0

6 AlwaysReject

7 Log output_file lj.csv max_precision true

8 Run num_trials 1

Text 4 and supplied in the Supplemental Online Mate-
rial in its entirety. Because there is only one particle type
given, the number of particles does not need to be ini-
tialized and is simply assumed based on the xyz file. If
more than one type of particle was initialized, use the
Configuration arguments add particles of type0,
add particles of type1, etc., to explicitly add the
number of particles of each type. When adding parti-
cles with this argument, the position in the particle file
is used and all particles are overlapping. To input spe-
cific coordinates, the XYZ file must provide coordinates
in the specific order of all particles of type 0 followed by
all particles of type 1, etc.

According to the SRSW,63 the LJ pair-wise poten-
tial energy is ULJ/ϵ = −16.790 and the long-range
corrections are ULRC/ϵ = −0.54517. Using Text 4
and 5, these energies are −16.79032130462587 and
−0.5451660014945706 respectively, as output into the
“lj.csv” file, which is equivalent to the SRSW values
within the reported precision.

FEASST also supports simulations in two dimensions.
See the file “$HOME/feasst/particle/atom2d.fstprt” as
an example. In this case, the XYZ files have third di-
mension coordinates and PBC lengths of 0.

E. Restarting a FEASST simulation from Checkpoint

Checkpoint periodically writes a file that may restart
a simulation. Restarting a simulation uses the “rst” ex-
ecutable with the command

TEXT 6. TrialGrowFile example using DCCB insertion and
deletion of SPC/E water.

1 TrialGrowFile

2

3 particle_type 0 weight 2 transfer true site 0

num_steps 10 reference_index 0

4 bond true mobile_site 1 anchor_site 0

reference_index 0

5 angle true mobile_site 2 anchor_site 0

anchor_site2 1 reference_index 0

$HOME/feasst/build/bin/rst lj checkpoint.fst

where “lj checkpoint.fst” is obtained from the sim-
ulation in Text 2. Checkpoint also includes a
num hours terminate argument that may safely termi-
nate a simulation before the queued wall clock limit and
may be detected in Bash using the command

? != 0

Checkpoint saves the state of most class data mem-
bers. This allows restarting a simulation without any
discernible difference in results from a simulation that
was not restarted. Because all data, including cell and
neighbor lists, are written to a Checkpoint file, the files
may become very large in some cases.

F. Example of configurational bias (CB) insertion of
SPC/E water

Although the previous examples considered a bulk fluid
with single-site LJ interactions without CB, FEASST
also supports CB and DCCB33 insertions, deletions and
regrowth. Using the TrialGrowFile class, the CB of
particles is described in text files with a similar argument
pair structure that may be programmatically generated
in Python for more complex molecules.
An example TrialGrowFile input file is shown in

Text 6 for the insertion and deletion of an SPC/E water
molecule with an oxygen atom followed by 2 hydrogens.
The file format is described more extensively in the on-
line documentation, but here we will touch on the basic
aspects. The first line ensures that the file was intended
for TrialGrowFile. A TrialGrowFile input file may
contain multiple trial moves, with each move separated
by a blank line. In this case, the only blank line is line 2
because there is only one trial. The trial begins on line
3.
The first line for each trial contains arguments such as

the type of particle as well as the weight to select the par-
ticular trial from among all trials in MonteCarlo. Both
particle insertions and deletions are attempted with equal
probability due to the transfer true argument on line
3. The oxygen atom, with site index 0, is placed with

12

ten DCCB steps using the first reference potential. This
assumes that the first reference potential was already ini-
tialized using the RefPotential Action as shown in the
tenth tutorial in the flat histogram plugin for low tem-
perature water. In this case, the first site is the oxygen
atom which contains all excluded volume interactions.
Thus, an efficient reference potential for DCCB would
be a short-range potential that accounts for exclude vol-
ume using a cell list between only oxygen atoms while
ignoring hydrogen.

Line 4 places the first hydrogen based on the bonded
potential to the oxygen anchor site. Line 5 places the
second hydrogen based on the bond to the oxygen as
well as the angle with the first hydrogen. Documentation
for these arguments is in TrialGrowFile. Because both
lines 4 and 5 do not include the num steps argument, the
default number of steps is 1 such that CB is not used for
the hydrogen atoms. Finally, the full potential energy is
computed in the DCCB method and used as part of the
acceptance criteria.

G. FEASST versions indicate text input file and
checkpoint file backwards compatibility

This article describes FEASST version 0.25.1. The
first version index refers to the major version of the
C++ application programming interface (API) and is
currently 0 because the C++ API is under rapid devel-
opment. We assign a secondary API as the input file
interface, with the second version number correspond-
ing to a major version update to the input file inter-
face, with backward incompatible changes, and the third
version number corresponding to a minor version up-
date, with backwards compatible changes. The pub-
lic interface is defined as a dictionary of all class ar-
guments using the tool “$HOME/feasst/dev/tools/ana-
lyze public interface.py” so that each version is system-
atically compared with the “dictdiffer” Python tool.

When the second version index, currently 25, increases,
input files may expect different arguments. For ex-
ample, when the second version index increased from
23 to 24, the file name argument of Checkpoint was
changed to checkpoint file. Backwards incompatible
changes such as these are listed in the Change Log of the
Text Interface section in the online documentation, and
the old arguments may still be supported with a depre-
cation warning. For example, if the file name argument
is given to Checkpoint in version 0.24, the simulation
will proceed as in version 0.23 with a warning to update
the name of the argument. The third version index, cur-
rently 0, increases when backwards compatible changes
are made, such as introducing new features that do not
affect existing features. Although Checkpoint changes
are made backwards compatible where possible, by giv-
ing each class a unique serialization version, Checkpoint
files may only work with the exact same version in other
cases.

FIG. 12. Flowchart for the Configuration class where an oval
is a class and arrows point toward classes contained within the
originator. The boxes represent multiple classes. To improve
readability, not all FEASST classes are shown.

IV. FEASST NOMENCLATURE AND DESIGN

Here, we summarize the design and naming of FEASST
classes for several reasons. New users of FEASST ben-
efit from the knowledge of which FEASST classes con-
tain and subclass other classes to anticipate which argu-
ments and options are available to each class. Such an
object-oriented design also aids in the customization of
FEASST. Instead of building MC simulations with only
integers, floating point numbers, and character strings,
we use object-oriented programming to create objects
specifically designed for MC simulations. This approach
facilitates modular, reusable, extensible and maintain-
able software.

A. The Configuration class

Fig. 12 shows some of the classes contained by
Configuration. Throughout this article, the names
of FEASST classes, arguments and plugins use this
typeset. Because we cannot assume a constant num-
ber of particles, a Configuration object is defined both
by the number and types of particles that may exist and
by the particles that currently exist. Particles that may
exist are defined by two separate ParticleFactory, one
for unique sites and the other for unique particles. A
third ParticleFactory defines the current particles that
exist, but their type and bond information is not dupli-
cated. Configuration contains the spatial Domain in
which particles reside, as well as the NeighborCriteria
to define neighbors. Each Particle contains a collection
of sites, and each Site contains a Position and, option-
ally, an orientation. A Particle may also have many

13

Bond, Angle or Dihedral objects.

B. The System class

The System class shown in Fig. 13 includes three dif-
ferent PotentialFactory objects. The first is the un-
optimized potential, the second is the optimized poten-
tial, and the third are reference potentials. Infrequently,
the slow unoptimized potential may be compared to the
optimized one, while reference configurations may be
used for specialized techniques such as MayerSampling
and DCCB.33 Optimized potentials may refer to those
that use cell lists, neighbor lists, or a specialized single-
purpose code for a particular system (e.g., as demon-
strated for a simulation of Lennard-Jones in cuboid PBCs
in the opt lj plugin). A System may also contain a
number of Configuration objects, and a BondVisitor,
which computes bonded interactions, and ThermoParams,
which contains thermodynamic parameters such as tem-
perature, pressure and chemical potential.

PotentialFactory contains a number of Potential
objects. A Potential includes both a Model and
VisitModel using the visitor design pattern.62 A Model
defines one- or two-body interactions between sites, while
a VisitModel sums the interaction energies between
a Select part of the Configuration, or the entire
Configuration. Model may include one-body interac-
tions, such as confinement, or two-body interactions such
as LennardJones. The LennardJones class is derived
from Model and ModelTwoBody. This object-oriented de-
sign allows derived models such as LennardJones to be
easily replaced with other models, or customized without
affecting the rest of the code (e.g., modular and exten-
sible). All derived classes can be extended by users as
detailed in Section VIB, where base class functions such
as energy, which depends on distance and types, can
be overridden by the derived class to return a different
expression.

VisitModel also has a variety of derived classes,
including Ewald, LongRangeCorrections, and
VisitModelCell, for cell-lists or intramolecular interac-
tions with VisitModelIntra. VisitModelInner allows
extensions to anisotropic interactions, either through
Kern-Frenkel patches with VisitModelInnerPatch
or through tabular anisotropic potentials with
VisitModelInnerTable. VisitModellInner also
contains EnergyMap, which stores interaction energies,
separation distances, and PBC information in order to
support the use of neighbor-lists, rigid cluster transla-
tions and rotations, and aggregation volume bias.35 A
few different kinds of EnergyMap include storing the
interactions of all particles with EnergyMapAll, or only
interacting neighbors with EnergyMapNeighbor, or only
store interactions subject to additional criteria such as
separation distance or site types.

FIG. 13. Flowchart for the System class with symbols and
shapes as described in Fig. 12. Classes connected by the blue
dashed arrows indicate the base and derived classes, respec-
tively, and cylinders represent many options for derived class.

C. The Trial class

The Trial class is illustrated in Fig. 14. A Trial is
performed with a number of TrialStage objects, where
each stage has both TrialSelect and Perturb. The
Perturb class changes the System to calculate the trial
Acceptance while retaining enough information to final-
ize the Trial if it is accepted, or revert the Trial if it is
rejected.
Perturb may utilize a Tunable parameter for a tar-

get acceptance. PerturbMove is for Perturb that only
changes the positions of the sites. These may in-
clude PerturbTranslation, PerturbRotation or more
complex perturbations. Other Perturb classes include
PerturbAdd and PerturbRemove for µV T ensemble tri-
als, as well as PerturbVolume for the isothermal-isobaric
ensemble.

Because MC trials often have 25% or less acceptance
probability, for optimization,97 attempts should perform
as little change to the old state as necessary to com-
pute the Acceptance, and only implement the remaining
changes after the trial has been accepted. Any changes
are reverted upon trial rejection. Furthermore, to enable
parallel Prefetch,57 all these changes are synchronized
between processors.

The TrialSelect class involves the selection of the
particles or sites that are subject to Perturb. These
may involve the selection of particles, specific bonds, an-
gles or dihedrals within the particles. Each TrialStage

14

FIG. 14. Flowchart for the Trial class with symbols and
shapes as described in Fig. 13.

may be selected using Rosenbluth-weighted probabili-
ties. While each TrialStage is performed in sequence,
the Acceptance class records changes to the System such
as the energy differences of the old and new states. Fi-
nally, TrialCompute obtains the overall Trial accep-
tance probability.

D. The MonteCarlo class

The MonteCarlo class shown in Fig. 15 contains a num-
ber of Trial, Analyze and Modify objects as well as a
Random number generator, the System and the accep-
tance Criteria. Criteria is another base class from
which Metropolis, FlatHistogram or MayerSampling
are derived, which allows the MonteCarlo class to in-
terchangeably utilize these different methodologies. The
Criteria function is accepted is overridden by the de-
rived classes to modify how Trial attempts are accepted
or rejected, in a similar fashion to how LennardJones
overrides ModelTwoBody as discussed in Section IVB.

Further object-oriented design is utilized in
FlatHistogram, which contains both Macrostate
definitions, and a Bias procedure. Possible Bias in-
cludes WangLandau, TransitionMatrix or both, WLTM,
while Macrostate may be the number of particles,
energy, the inverse temperature or other possibilities.
Analyze or Modify classes may be performed after a

given number of trials. While Analyze does not change
the System, TrialFactory or Criteria, Modify classes
may. These may be important to distinguish especially
in parallel Prefetch. Example Analyze classes include

FIG. 15. Flowchart for the MonteCarlo class with symbols
and shapes as described in Fig. 13.

printing energies and trial acceptance probabilities with
Log, trajectories with Movie or analysis of the ensemble
average Energy. Example Modify classes include Tune
for target acceptance probability or CheckEnergy to en-
sure that the summation of the change in energy does
not drift due to numerical precision, and to catch errors
in optimized energy evaluations.

E. Design components of a FEASST class

FEASST classes have the following components if they
are present in the text user interface, or are derived by
those classes. A class constructor takes input argument
pairs in the keyword and value syntax described in Sec-
tion III B. These input arguments are documented with
default values, if applicable. Derived classes may also uti-
lize these input arguments. Public functions hide private
data.
Checkpointing is enabled by serialization as described

by the Standard C++ Organization.98 Serialization is the
conversion of software objects in memory to characters
in files, while deserialization is the reverse. The member
data of each FEASST class are serialized and deserialized
in the same order, starting with a class name if a derived
or base class, followed by a unique serialization version for
each object, and then serialization of all member data in
a specific order that is mirrored in deserialization. Base
and derived classes use static maps with a factory design
pattern,62 enabling text interface creation of new objects
via class names.

15

V. GUIDELINES FOR PERFORMING AND
TROUBLESHOOTING FEASST SIMULATIONS

First, we recommend verifying that the potential en-
ergy is computed as expected based on calculations by
another trusted software or researcher by comparison
with a reference configuration, as demonstrated in Sec-
tion IIID. Second, find a tutorial that is the closest to
what needs to be accomplished, and modify it as nec-
essary based on the Text Interface section of the online
documentation. A summary of tutorials is provided in
Section IIK. Third, reproduce an expected, published
or trusted result before simulating models or thermody-
namic conditions that have never been performed before.
Fourth, run a series of short simulations to optimize sim-
ulation parameters, trial weights, and file output frequen-
cies. Checkpoint and restart with a short simulation on
a test queue before starting a long simulation that con-
sumes HPC resources.

Users and developers may be found on the GitHub
issue tracker,99 and email list,100 where users may benefit
from previously answered questions. Although any and
all reports are appreciated, questions may be easier to
address and more quickly answered with the following
guidelines as described below.

The first suggestion for preparing an issue is to repro-
duce the issue with a minimal example that reduces the
complexity, run time, and file sizes. This allows others to
quickly reproduce and debug the issue. For example, if
an issue occurs when using multiple potentials, trials or
analysis, remove one at a time until the minimal number
is found that still gives the same issue. If the error only
occurs after a long simulation, see if the issue may be re-
produced more quickly after increasing the frequency of
CheckEnergy or reducing the number of particles. An-
other option is to start the simulation from an initial
structure. Ideally, the issue may be reproduced in a few
seconds on a single processor.

The second suggestion is to minimize the number of
necessary files, and lines in files, required to reproduce
the issue. The first file to include is the text interface
file. In all the online tutorials, Python scripts generate
text files that are input to the “fst” executable. This
generated text file is often less complex than the Python
script. The text file may also reference other files re-
quired to reproduce the issue, such as those with the
“fstprt” file extension that describe particles. In some
cases, CB files read by TrialGrowFile may be needed,
as well as TablePotential, ShapeFile and initial XYZ
configurations.

After simplifying these files, verify that the same issue
may be reproduced using the command

$HOME/feasst/build/bin/fst < script.txt

where script.txt is the FEASST input file.
The third suggestion is to provide the FEASST ver-

sion in the description of the issue. The version may be

obtained with the command

git describe --abbrev=10 --dirty --always
--tags

or by providing the git commit from the command “git
log.” For issues during compilation, include the output
of the “cmake ..” command from Text 1 starting from an
empty build directory.
The fourth suggestion is to provide a backtrace. This

can be done with the GNU Debugger101 (GDB) using the
command

gdb $HOME/feasst/build/bin/fst

followed by the GDB commands “catch throw” for asser-
tion errors, then “r script.txt” and finally “bt” for the
backtrace. If the error involves memory issues or a seg-
mentation fault, it may also help to run the simulation
in Valgrind102 using the command

valgrind $HOME/feasst/build/bin/fst <
text.txt > text.log 2>&1

although Valgrind slows down the simulation.

VI. ALTERNATIVE INTERFACES, CUSTOMIZATION
AND TESTING

Here, we discuss the specialized usage of FEASST with
alternative APIs, customized classes and plugins, and au-
tomation of tests.

A. Interfaces for C++, Python and client-server

The recommended interface for most FEASST use
cases is the text interface described in the Secs. II-V
of this article. Other alternatives are C++ or Python li-
braries, text input via a Python module, and client-server
mode. The main benefits of the text interface are as fol-
lows. Input files may be generated using a scripting lan-
guage for convenience, and the resulting input file is often
easier to test and share with others. Another benefit of
the text interface is restarting. The input file is stored
in its entirety before each line is executed in sequence.
Thus, when a simulation is checkpointed and restarted,
the lines that have not finished or have not been per-
formed are executed. In comparison, using FEASST as a
library in Python or C++ requires the user to know how
far the code proceeded before it was terminated.
There are two types of Python interfaces currently

available. The first is in active development and uses py-
bind11 to expose the text interface commands to Python,
as described in the Python Interface section of the online
documentation. This allows tasks in Python between

16

trials, such as additional analysis, checking if the sim-
ulation is complete or detecting that an HPC queue will
soon preempt the job so that a clean termination and
restart are possible. An example is found in “$HOME-
/feasst/python/tutorial/test.py.”

The second Python interface is documented by a link
at the end of the online Python interface section and is
not recommended for most applications. This Python
interface uses SWIG to expose the entire C++ API to
Python. The FEASST SWIG interface has also been
difficult for many users to compile using the command

cmake -DUSE SWIG=ON ..

during compilation. An example is found in “$HOME-
/feasst/tutorial/library/tutorial.py.” The SWIG Python
interface is not recommended because it is prone to user
errors, is difficult to maintain, and may be deprecated in
future versions of FEASST.

Another alternative interface is to use FEASST as
a library in C++. In this case, nearly all aspects of
FEASST are available to the user. The C++ interface is
the most flexible because the core of FEASST is written
in C++. An example is found in “$HOME/feasst/tu-
torial/library/tutorial.cpp” and “$HOME/feasst/tutori-
al/library/CMakeLists.cpp.”

There are also specialized client-server mode and MPI
options to run FEASST as a server with C++ or
Python clients. For example, the classes ModelServer
and ModelMPI query a client for the interaction en-
ergy as a function of distance and type. Server-
client communication in this way is slow compared to
compiled C++ code for Lennard-Jones, and is there-
fore not recommended except for models that are
much more computationally expensive than Lennard-
Jones, such as quantum-mechanical or machine-learned
potentials. This server-client method is demon-
strated in both “$HOME/feasst/plugin/server/tutori-
al/launch 2 model server.py” and “$HOME/feasst/plug-
in/mpi/tutorial/launch 1 model mpi.py.” In comparison
with the server example, the MPI example may commu-
nicate more quickly but also uses more CPU cycles simply
waiting for a response. These methods are available in
the server and mpi plugins.

Another use of the client-server interface is for Python
clients to give FEASST servers text interface commands
line-by-line. This is demonstrated in “$HOME/feasst/-
plugin/server/tutorial/tutorial 0 server.ipynb.” An-
other example is given in “$HOME/feasst/plug-
in/server/tutorial/launch 1 custom terminate.py” where
the client sends a Run command to the FEASST server
to attempt trial moves until a desired condition is met
(e.g., elapsed time). One of the convenient aspects of this
kind of client-server approach to running FEASST sim-
ulations is that control is given to the client in between
intervals of fixed numbers of trials, while the FEASST
simulation is still held in memory, which can be used to
analyze simulations, as well as interact with the simula-

TEXT 7. Command line copy and renaming of an existing
FEASST class allows implementation of new potential models
without affecting the original FEASST source code.

1 cd $HOME/feasst/plugin/example
2 sed "s/MODEL_EXAMPLE/NEW_NAME/g"

include/model_example.h > include/new_name.h

3 sed "s/model_example\.h/new_name.h/g"

src/model_example.cpp > src/new_name.cpp

4 sed -i "s/ModelExample/NewName/g"

include/new_name.h src/new_name.cpp

tions using customized Action classes. Although interop-
erability with other software, such as i-PI,103 CSLib104

and MolSSI MDI,105 is not currently implemented, the
FEASST developers hope to better establish such inter-
faces to simulation engines and machine-learning poten-
tials in future work.

B. Customizing and extending FEASST classes and
plugins

Custom classes and plugins in FEASST are easily
created by copying an existing one, renaming and
then modifying, as inspired by the modular design of
LAMMPS classes and packages. To illustrate the ease
of extending FEASST, the following four commands
shown in Text 7 are all that is required to create a new
ModelTwoBody interaction, NewName, that is usable in
the text input file, after re-compilation shown in Text 1,
and may then be further modified without affecting any
of the original FEASST source code. This allows for the
development of new features without affecting the exist-
ing features. The same copy and rename strategy may
be applied to any FEASST classes derived from Random,
Formula, Minimize, Solver, Shape, Model, ModelParam,
PhysicalConstants, VisitModel, VisitModelInner,
EnergyMap, Bond(Two/Three/Four)Body, Analyze,
Modify, Action, Constraint, TrialSelect, Perturb,
TrialCompute, Trial, Criteria, Macrostate and Bias.
When creating a custom class, first a developer would

find an existing class that is related to the new feature.
Second, the developer may copy a class header and im-
plementation file, with file extensions “.h” and “.cpp,”
while renaming these files. Third, the class name in both
the header and implementation file is changed, along with
the header guards in all capitals and the header include.
Finally, FEASST should be recompiled, and optionally
the tests and serialization version should change. In a
similar fashion, new plugins may also be created by copy-
ing an existing plugin and renaming each class. Before
recompiling, the plugin should also be added to the “FE-
ASST PLUGINS” variable in “$HOME/feasst/CMake-
Lists.txt” as well as one of the new classes added to the
“$HOME/feasst/py/depend.py” file. This process is fur-
ther described in the online documentation section titled

17

Modify FEASST.
Debugging output can be achieved by setting the

VERBOSE LEVEL variable in the “$HOME/feasst/u-
tils/include/debug.h” file to the desired level and out-
put and test with the following provided macros:
FATAL, ERROR, ASSERT, WARN, INFO, DEBUG
and TRACE. Examples of the usage of these debugging
macros are also provided in the example plugin, along
with a description of obtaining user-input arguments and
serialization.

C. Test-driven development strategy

FEASST development follows the test-driven strategy.
In this strategy, new features begin with a test built
around an interface before actual implementation of the
feature. This allows developers to first consider how the
required information is obtained from the user or other
classes. A series of tests are then designed around this
interface. Finally, the developer implements the feature
and debugs with the automated tests. The automated
tests are maintained to test future changes. The benefit
of this strategy is an increased focus on testing and de-
sign of the user interface, and the cost of this strategy is
that the tests increase the number of lines of code that
need to be written and maintained. Developers must bal-
ance the number of tests against the complexity of the
new feature, where there is a trade-off between tests that
quickly identify an error and tests that are a burden to
maintain.

The GoogleTest C++ unit tests106 (GTEST) may be
compiled by defining the GTEST variable of CMake in
line 7 of Text 1 with the command

cmake -DUSE GTEST=ON ..

to create the executable “$HOME/feasst/build/bin/u-
nittest.” Run only the fast unit tests with the command

$HOME/feasst/build/bin/unittest
--gtest filter=-*LONG

to quickly search for possible issues. The unit tests with
a suffix of “LONG” if they take more than a fraction of
a second and “VERY LONG” if they take more than a
minute. The GTEST filter may also be used to only run
tests associated with a specific feature to speed develop-
ment.

Most Python tutorials in FEASST include a post-
process step at the end of the simulation to analyze the
final result and compare against published values, if avail-
able. Every tutorial in the develop branch is automati-
cally run weekly on an HPC and any errors during the
simulation or at the post-processing step are reported to
the developers. This helps ensure changes to FEASST
do not disrupt previously developed tutorials.

Development of FEASST is closely connected to vali-
dated, reference-quality results of molecular simulation

provided in the NIST SRSW.63 The intention behind
this close connection between the NIST SRSW and open-
source FEASST is to establish traceability between vali-
dated results or ground-truth calculations and the com-
putational measurement conducted by FEASST, akin to
the traceability chain that links reference materials to the
International System of Units. For example, FEASST
accurately reproduces the energy of reference configura-
tions provided in the SRSW, which is demonstrated in
a tutorial (e.g., see Sec IIID) that is regularly re-tested
(see above); this is an example of FEASST reproducing
a ground-truth calculation since the energy of a partic-
ular configuration can be reproduced outside of actual
molecular simulation software. A second example is the
tutorial in the FEASST documentation that reproduces
the average energy of a canonical ensemble of LJ parti-
cles at specified density and pressure; this measurement,
with associated uncertainty that arises from randomness
in its Markov Chain, is compared against MC results
from other validated software to confirm the reliability
of FEASST for the particular application. Such compar-
isons rely on satisfactory description of the simulation
results (ensemble parameters, system size, forcefield pa-
rameters, etc.) so that the simulation can be faithfully
reproduced in, for this case, FEASST. The NIST SRSW
offers examples of such simulation descriptions and asso-
ciated results that provide the basis for tests that can be
used to validate the new features of FEASST (or other
simulation software). We encourage FEASST developers
to follow this pattern so that new features are validated
against and traceably linked to trusted results.

D. Open license and “as is” disclaimer

FEASST users should not assume that results from
FEASST are correct without any testing. Parameters
may not have been input correctly, or there could be
an error or issue with the particular kind of simulation.
There are not enough FEASST developers and available
computer resources to test every possible combination of
methods and parameters each time the software is mod-
ified. See Section V for more guidelines on troubleshoot-
ing FEASST simulations.
The full license of FEASST is provided in the on-

line documentation and GitHub repository. To approxi-
mately summarize, FEASST is currently provided “as is”
by NIST as a public service. NIST cannot be held liable
for any damages arising from the use of FEASST. Use
of FEASST, improvements, modifications and derivative
works should appropriately acknowledge NIST.
This article is a contribution of NIST, not subject

to U.S. Copyright. Certain commercial firms and trade
names are identified in this document in order to specify
the compilation and usage procedures adequately. Such
identification is not intended to imply recommendation
or endorsement by NIST, nor is it intended to imply that
related products are necessarily the best available for the

18

purpose.

VII. CONCLUSIONS

We highlight some of the unique features of the open
source MC simulation software called FEASST, which
has been used previously to study phase behavior, self-
assembly, aggregation and gelation of biological materi-
als, colloids, polymers, ionic liquids and adsorption in
porous networks. FEASST is parallelized with prefetch-
ing and flat-histogram methods. The complete source
code and documentation for version 0.25.1 of FEASST
are available in the Supplemental Online Material, while
more up-to-date information may be found at the https:
//pages.nist.gov/feasst website.16

The Free Energy and Advanced Sampling Simulation
Toolkit (FEASST) supports many flat-histogram meth-
ods, which is why we chose the “Free Energy” part of
the name. “Advanced Sampling” refers to the specialized
trials available, such as CB. “Toolkit” references the cus-
tomizable and extensible modular design that supports
user-created plugins. Altogether, the acronym hints at
a veritable feast of MC methods, where the second “S”
helps with search engine optimization. The logo forms
an “F” from a two-state free energy shown in blue and a
flat-histogram shown in red.

VIII. SUPPLEMENTAL ONLINE MATERIAL

The Supplemental Online Material contains the follow-
ing:

• feasst-0.25.1.zip and feasst-html-0.25.1.zip contains
the complete source code and HTML documenta-
tion, respectively, of the specific version of FEASST
described in this article. See https://doi.org/
10.18434/M3S095 for the most up-to-date informa-
tion on FEASST.

• fig data.zip contains the data for Figs. 1 to 10 in
the comma-separated value format.

• script.txt contains Text 2 for convenience without
the line numbers.

• lj ref config.xyz contains the entire configuration il-
lustrated in Text 4.

1N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).

2A. Gupta, S. Chempath, M. J. Sanborn, L. A. Clark, and R. Q.
Snurr, Mol. Simul. 29, 29 (2003).

3W. L. Jorgensen and J. Tirado–Rives, J. Comput. Chem. 26,
1689 (2005).

4M. G. Martin, Mol. Simul. 39, 1212 (2013).
5A. J. Schultz and D. A. Kofke, J. Comput. Chem. 36, 573 (2015).
6A. V. Brukhno, J. Grant, T. L. Underwood, K. Stratford, S. C.
Parker, J. A. Purton, and N. B. Wilding, Mol. Simul. 47, 131
(2021).

7J. K. Shah, E. Marin-Rimoldi, R. G. Mullen, B. P. Keene,
S. Khan, A. S. Paluch, N. Rai, L. L. Romanielo, T. W. Rosch,
B. Yoo, and E. J. Maginn, J. Comput. Chem. 38, 1727 (2017).

8M. Lund, M. Trulsson, and B. Persson, Source Code Biol. Med.
3, 1 (2008).

9D. Dubbeldam, S. Calero, D. E. Ellis, and R. Q. Snurr, Mol.
Simul. 42, 81 (2016).

10Y. Nejahi, M. Soroush Barhaghi, J. Mick, B. Jackman,
K. Rushaidat, Y. Li, L. Schwiebert, and J. Potoff, SoftwareX
9, 20 (2019).

11R. Hens, A. Rahbari, S. Caro-Ortiz, N. Dawass, M. Erdős,
A. Poursaeidesfahani, H. S. Salehi, A. T. Celebi, M. Ramdin,
O. A. Moultos, D. Dubbeldam, and T. J. H. Vlugt, J. Chem.
Inf. Model. 60, 2678 (2020).

12M. Penaloza-Amion, E. Sedghamiz, M. Kozlowska, C. Degitz,
C. Possel, and W. Wenzel, Front. Phys. 9, 635959 (2021).

13S. Deublein, B. Eckl, J. Stoll, S. V. Lishchuk, G. Guevara-
Carrion, C. W. Glass, T. Merker, M. Bernreuther, H. Hasse,
and J. Vrabec, Comput. Phys. Commun. 182, 2350 (2011).

14H. J. Limbach, A. Arnold, B. A. Mann, and C. Holm, Comput.
Phys. Commun. 174, 704 (2006).

15Y. Sun, R. F. DeJaco, and J. I. Siepmann, Chemical Science
10, 4377 (2019).

16“FEASST Website,” https://doi.org/10.18434/M3S095

(2024).
17H. W. Hatch, N. A. Mahynski, and V. K. Shen, J. Res. Natl.
Inst. Stan 123, 123004 (2018).

18L. Talirz, L. M. Ghiringhelli, and B. Smit, Living J. Comput.
Mol. Sci. 3, 1483 (2021).

19M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith,
B. Hess, and E. Lindahl, SoftwareX 1-2, 19 (2015).

20S. Plimpton, J. Comput. Phys. 117, 1 (1995).
21A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu,
W. M. Brown, P. S. Crozier, P. J. in ’t Veld, A. Kohlmeyer, S. G.
Moore, T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida,
C. Trott, and S. J. Plimpton, Comp. Phys. Comm. 271, 108171
(2022).

22J. K. Singh and D. A. Kofke, Phys. Rev. Lett. 92, 220601 (2004).
23F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001).
24J. R. Errington and V. K. Shen, J. Chem. Phys. 123, 164103
(2005).

25A. Z. Panagiotopoulos, Mol. Phys. 61, 813 (1987).
26A. P. Lyubartsev, A. A. Martsinovski, S. V. Shevkunov, and
P. N. Vorontsov-Velyaminov, J. Chem. Phys. 96, 1776 (1992).

27N. Kern and D. Frenkel, J. Chem. Phys. 118, 9882 (2003).
28R. B. A. Ole Bird, Dynamics of Polymeric Liquids. Volume 1:
Fluid Mechanics, first edition ed. (John Wiley, New York, 1977).

29M. G. Martin and J. I. Siepmann, J. Phys. Chem. B 102, 2569
(1998).

30J.-P. Ryckaert and A. Bellemans, Faraday Discuss. 66, 95
(1978).

31I.-C. Yeh and M. L. Berkowitz, J. Chem. Phys. 111, 3155 (1999).
32J. I. Siepmann and D. Frenkel, Mol. Phys. 75, 59 (1992).
33T. J. H. Vlugt, M. G. Martin, B. Smit, J. I. Siepmann, and
R. Krishna, Mol. Phys. 94, 727 (1998).

34B. Chen and J. I. Siepmann, J. Phys. Chem. B 104, 8725 (2000).
35B. Chen and J. I. Siepmann, J. Phys. Chem. B 105, 11275
(2001).

36A. Sepehri, T. D. Loeffler, and B. Chen, J. Chem. Theory
Comput. 13, 1577 (2017).

37H. W. Hatch, J. Mittal, and V. K. Shen, J. Chem. Phys. 142,
164901 (2015).

38H. W. Hatch, S.-Y. Yang, J. Mittal, and V. K. Shen, Soft
Matter 12, 4170 (2016).

39H. W. Hatch, W. P. Krekelberg, S. D. Hudson, and V. K. Shen,
J. Chem. Phys. 144, 194902 (2016).

40N. A. Mahynski, H. Zerze, H. W. Hatch, V. K. Shen, and
J. Mittal, Soft Matter 13, 5397 (2017).

41E. Pretti, H. Zerze, M. Song, Y. Ding, N. A. Mahynski, H. W.
Hatch, V. K. Shen, and J. Mittal, Soft Matter 14, 6303 (2018).

19

42H. W. Hatch, N. A. Mahynski, R. P. Murphy, M. A. Blanco,
and V. K. Shen, AIP Advances 8, 095210 (2018).

43R. P. Murphy, H. W. Hatch, N. A. Mahynski, V. K. Shen, and
N. J. Wagner, Soft Matter 16, 1279 (2020).

44H. W. Hatch and G. W. McCann, J. Res. Natl. Inst. Stand.
Technol. 124, 1 (2019).

45T. A. Maula, H. W. Hatch, V. K. Shen, S. Rangarajan, and
J. Mittal, Mol. Syst. Des. Eng. 4, 644 (2019).

46C. Rzepa, D. W. Siderius, H. W. Hatch, V. K. Shen, S. Ran-
garajan, and J. Mittal, J. Phys. Chem. C 124, 16350 (2020).

47D. W. Siderius, H. W. Hatch, and V. K. Shen, J. Phys. Chem.
B 126, 7999 (2022).

48D. W. Siderius, H. W. Hatch, and V. K. Shen, J. Phys. Chem.
B (2024), 10.1021/acs.jpcb.4c00753.

49M. A. Blanco, H. W. Hatch, J. E. Curtis, and V. K. Shen, J.
Pharm. Sci. 108, 1663 (2019).

50H. W. Hatch, S. W. Hall, J. R. Errington, and V. K. Shen, J.
Chem. Phys. 151, 144109 (2019).

51N. A. Mahynski, H. W. Hatch, M. Witman, D. A. Sheen, J. R.
Errington, and V. K. Shen, Mol. Simul. 47, 395 (2021).

52N. A. Mahynski, S. Jiao, H. W. Hatch, M. A. Blanco, and V. K.
Shen, J. Chem. Phys. 148, 194105 (2018).

53H. W. Hatch, S. Jiao, N. A. Mahynski, M. A. Blanco, and V. K.
Shen, J. Chem. Phys. 147, 231102 (2017).

54J. I. Monroe, W. P. Krekelberg, A. McDannald, and V. K.
Shen, J. Chem. Phys. 158, 164110 (2023).

55H. W. Hatch, D. W. Siderius, J. R. Errington, and V. K. Shen,
J. Phys. Chem. B 127, 3041 (2023).

56D. W. Siderius, H. W. Hatch, J. R. Errington, and V. K. Shen,
AIChE J. 68, e17686 (2022).

57H. W. Hatch, J. Phys. Chem. A 124, 7191 (2020).
58M. S. Shell, P. G. Debenedetti, and A. Z. Panagiotopoulos, J.
Chem. Phys. 119, 9406 (2003).

59V. K. Shen and D. W. Siderius, J. Chem. Phys. 140, 244106
(2014).

60K. S. Rane, S. Murali, and J. R. Errington, J. Chem. Theory
Comput. 9, 2552 (2013).

61K. R. S. Shaul, A. J. Schultz, and D. A. Kofke, J. Chem. Phys.
135, 124101 (2011).

62E. Gamma, R. Helm, R. Johnson, J. Vlissides, and G. Booch,
Design Patterns: Elements of Reusable Object-Oriented Soft-
ware, 1st ed. (Addison-Wesley Professional, Reading, Mass,
1994).

63V. K. Shen, D. W. Siderius, W. P. Krekelberg, and H. W.
Hatch, NIST Standard Reference Simulation Website (NIST
Standard Reference Database Number 173, National Institute
of Standards and Technology, Gaithersburg, MD, 2024).

64B. Chen, J. I. Siepmann, K. J. Oh, and M. L. Klein, J. Chem.
Phys. 116, 4317 (2002).

65L. G. MacDowell, V. K. Shen, and J. R. Errington, J. Chem.
Phys. 125, 034705 (2006).

66H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J.
Phys. Chem. 91, 6269 (1987).

67A. Giacometti, F. Lado, J. Largo, G. Pastore, and F. Sciortino,
J. Chem. Phys. 132, 174110 (2010).

68J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys.
54, 5237 (1971).

69D. J. Kraft, R. Ni, F. Smallenburg, M. Hermes, K. Yoon, D. A.
Weitz, A. v. Blaaderen, J. Groenewold, M. Dijkstra, and W. K.
Kegel, Proc. Natl. Acad. Sci. USA 109, 10787 (2012).

70J. R. Wolters, G. Avvisati, F. Hagemans, T. Vissers, D. J. Kraft,
M. Dijkstra, and W. K. Kegel, Soft Matter 11, 1067 (2015).

71V. I. Harismiadis, J. Vorholz, and A. Z. Panagiotopoulos, J.
Chem. Phys. 105, 8469 (1996).

72“GitHub Repo: mayer-extrapolation,” https://github.com/

usnistgov/mayer-extrapolation (2024).
73S. Qin and H.-X. Zhou, J. Phys. Chem. B 123, 8203 (2019).
74A. C. M. Young, J. C. Dewan, C. Nave, and R. F. Tilton, J.
Appl. Crystallogr. 26, 309 (1993).

75T. J. Dolinsky, J. E. Nielsen, J. A. McCammon, and N. A.

Baker, Nucleic Acids Res. 32, W665 (2004).
76D. Sitkoff, K. A. Sharp, and B. Honig, J. Phys. Chem. 98, 1978
(1994).

77M. H. M. Olsson, C. R. Søndergaard, M. Rostkowski, and J. H.
Jensen, J. Chem. Theory Comput. 7, 525 (2011).

78R. Huey, G. M. Morris, A. J. Olson, and D. S. Goodsell, J.
Comput. Chem. 28, 1145 (2007).

79H. W. Hatch, C. Bergonzo, M. A. M. Blanco, G. Yuan,
S. Grudinin, M. Lund, J. E. Curtis, A. V. Grishaev,
Y. Liu, and V. K. Shen, J. Chem. Phys. (2024),
https://doi.org/10.1063/5.0224809.

80J. J. Potoff and J. I. Siepmann, AIChE J. 47, 1676 (2001).
81J. Pérez-Pellitero, H. Amrouche, F. R. Siperstein, G. Pirn-
gruber, C. Nieto-Draghi, G. Chaplais, A. Simon-Masseron,
D. Bazer-Bachi, D. Peralta, and N. Bats, Chem. Eur. J. 16,
1560 (2010).

82D. W. Siderius and V. K. Shen, J. Phys. Chem. C 117, 5861
(2013).

83B. Larsen, J. Chem. Phys. 65, 3431 (1976).
84J. G. Harris and K. H. Yung, J. Phys. Chem. 99, 12021 (1995).
85H. Flyvbjerg and H. G. Petersen, J. Chem. Phys. 91, 461 (1989).
86“GCC, the GNU Compiler Collection,” https://gcc.gnu.org/

(2024).
87“CMake: A Powerful Software Build System,” https://cmake.

org/ (2024).
88“git,” https://git-scm.com/ (2024).
89“Python,” https://www.python.org/ (2024).
90“FEASST GitHub tags,” https://github.com/usnistgov/

feasst/tags (2024).
91“NIST Standard Reference Simulation Website: Lennard-Jones
Fluid: NVT Monte Carlo,” https://mmlapps.nist.gov/srs/

LJ_PURE/mc.htm (2024).
92M. Matsumoto and T. Nishimura, ACM Trans. Model. Comput.
Simul. 8, 3 (1998).

93M. P. Allen and D. J. Tildesley, Computer simulation of liquids
(Clarendon Press, 1989).

94D. Frenkel and B. Smit, Understanding Molecular Simulation:
From Algorithms to Applications (Academic Press, 2002).

95W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graph. 14,
33 (1996).

96A. Grossfield, P. N. Patrone, D. R. Roe, A. J. Schultz, D. W.
Siderius, and D. M. Zuckerman, Living J. Comput. Molec. Sci.
1, 5067 (2019).

97R. D. Mountain and D. Thirumalai, Physica A Stat. Mech. Appl.
210, 453 (1994).

98“The Standard C++ Foundation: Serialization and Unserializa-
tion,” https://isocpp.org/wiki/faq/serialization (2024).

99“FEASST GitHub issue tracker,” https://github.com/

usnistgov/feasst/issues (2024).
100“FEASST Google Group mail list,” https://list.nist.gov/

feasst (2024).
101“GDB: The GNU Project Debugger,” https://sourceware.

org/gdb/ (2024).
102“Valgrind,” https://valgrind.org/ (2024).
103V. Kapil, M. Rossi, O. Marsalek, R. Petraglia, Y. Litman,

T. Spura, B. Cheng, A. Cuzzocrea, R. H. Meißner, D. M.
Wilkins, B. A. Helfrecht, P. Juda, S. P. Bienvenue, W. Fang,
J. Kessler, I. Poltavsky, S. Vandenbrande, J. Wieme, C. Cormin-
boeuf, T. D. Kühne, D. E. Manolopoulos, T. E. Markland, J. O.
Richardson, A. Tkatchenko, G. A. Tribello, V. Van Speybroeck,
and M. Ceriotti, Computer Physics Communications 236, 214
(2019).

104“CSlib, a client/server messaging library for coupling scientific
applications,” http://cslib.sandia.gov (2024).

105T. A. Barnes, S. Ellis, J. Chen, S. J. Plimpton, and J. A. Nash,
The Journal of Chemical Physics 160, 214114 (2024).

106“GoogleTest,” https://github.com/google/googletest

(2024).

