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We develop a multiscale coarse-grain model of the NIST Monoclonal Antibody Reference Material 8671
(NISTmAb) to enable systematic computational investigations of high-concentration physical instabilities
such as phase separation, clustering, and aggregation. Our multiscale coarse-graining strategy captures
atomic-resolution interactions with a computational approach that is orders of magnitude more efficient
than atomistic models, assuming the biomolecule can be decomposed into one or more rigid bodies with
known, fixed structures. This method reduces interactions between tens of thousands of atoms to a single
anisotropic interaction site. The anisotropic interaction between unique pairs of rigid bodies is precomputed
over a discrete set of relative orientations and stored, allowing interactions between arbitrarily oriented rigid
bodies to be interpolated from the precomputed table during coarse-grained Monte Carlo simulations. We
present this approach for lysozyme and lactoferrin as a single rigid body and for the NISTmAb as three
rigid bodies bound by a flexible hinge with an implicit solvent model. This coarse-graining strategy predicts
experimentally measured radius of gyration and second osmotic virial coefficient data, enabling routine Monte
Carlo simulation of medically relevant concentrations of interacting proteins while retaining atomistic detail.
All methodologies used in this work are available in the open-source software Free Energy and Advanced
Sampling Simulation Toolkit (FEASST). (This is an author reprint of https://doi.org/10.1063/5.0224809).

I. INTRODUCTION

As annual pharmaceutical sales of antibodies total
nearly 1011 United States dollars1,2 to treat cancer,
arthritis, psoriasis, asthma, and other conditions,3 im-
provements in processing, storage, or delivery to patients
could have a large economic and quality of life impact.4

While antibodies are commonly delivered to patients
by intravenous administration,5 other desirable outpa-
tient and convenient delivery options include subcuta-
neous and subdermal injections. Such alternative routes
of administration require high protein concentration for-
mulations to meet the required dosage.6 These formula-
tions may encounter physical instabilities such as phase
separation, high viscosity, and aggregation.7–9 Models
of protein-protein interactions10 may be used to screen
pharmaceutical candidates to avoid these instabilities.

a)Electronic mail: harold.hatch@nist.gov

The focus of this work is developing a compu-
tational method to simulate monoclonal antibodies
(mAbs) in high concentration formulations.11 We use
the NIST Monoclonal Antibody Reference Material 8671
(NISTmAb)12 as a model protein to demonstrate our
method to better understand and avoid these high-
concentration physical instabilities. NISTmAb is a non-
proprietary mAb available to the public for fundamental
scientific study.13 We also model lysozyme and lactoferrin
for further validation of the methodology and comparison
to experiments with increasing size and complexity.

All-atom (AA) modeling of mAb-mAb interactions is
computationally costly and largely prohibitive due to
the large size of the solvated system.14,15 In previous
studies, AA explicit solvent molecular dynamics (MD)
simulations of 1.2 × 107 atoms were performed for hun-
dreds of nanoseconds.16 The special purpose Anton 2
supercomputer17 was also used to simulate an AA model
of E. coli cytoplasm up to microsecond timescales.18 In
this work, we hope to develop a multiscale coarse-grained
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(CG) modeling strategy that can be deployed by the
pharmaceutical industry to quickly model candidates in
early stage development without the use of specialized
computers. We use AA models of proteins with thou-
sands of interaction sites to develop CG models19 of pro-
teins with only a few interaction sites20–25 and use Monte
Carlo (MC) simulations to validate those models against
experimental data.

There are numerous examples of CG computational
models of mAbs described via sets of discrete interac-
tion sites,26 typically ranging in number between 3 and
12.10,27–44 These CG models can be used to compute
and predict second osmotic virial coefficients (B2),

45,46

osmotic compressibility,47 viscosity,48 self-diffusion,49 x-
ray scattering,50 and structure factors.51 While many of
these models are rigid, others include flexibility in the
hinge region.52 In this work, AA MD simulations with ex-
plicit solvent are used to parameterize the flexible inter-
domain linkers in the NISTmAb CG model. In addition,
while nearly all previous mAb models used isotropic in-
teractions, we use anisotropic interactions in this work.
While those require additional computational cost and
complexity, our model enables sub-nm resolution despite
having only three anisotropic interaction sites, one for
each of the antibody domains.

In a previous CG approach, Brownian dynamics mod-
eled proteins as rigid bodies in a continuum solvent,
where the potential was precomputed on cubic grids.53,54

Precomputation introduces an additional computation-
ally expensive step prior to the multi-molecule simula-
tions while accelerating these subsequent many-protein
simulations by several orders of magnitude. Precom-
puted potentials may be considered CG models with
the CG resolution determined by the grid spacing.
This approach was also used to account for molecular
flexibility55,56 and macromolecular crowding.57 Instead
of precomputing potentials on a cubic grid in this work,
we precompute pair-wise interactions.

Precomputation of pair-wise interactions as a function
of their relative orientation has been used previously to
simulate triangles58 and squares59 with rounded edges,
cylinders,60,61 and supertoroids.62 In addition, docking-
based fast Fourier transform (FFT) approaches may enu-
merate low-energy relative orientations of rigid proteins
for long timescale MC simulations that transition be-
tween these states.63 In this work, we precompute pair-
wise interactions of arbitrary 3-dimensional rigid objects
and apply this method to simulate proteins. This CG
strategy relies upon an existing detailed model for a com-
plex biomolecule and introduces an additional approxi-
mation and assumption. The approximation is that the
biomolecule can be reasonably decomposed into one or
more rigid bodies with known, fixed structure(s) and that
the interaction energy between these rigid bodies can be
computed for a fixed relative separation distance and rel-
ative orientation without the need for ensemble averages
(e.g., implicit solvent model).

For precomputing pair-wise interactions, there is flex-

ibility in the choice of the AA potential. Many AA po-
tentials perform well when a single protein at high dilu-
tion is compared against experimental data with explicit
solvent. However, to reduce the computational cost of
precalculation, implicit solvent models allow the inter-
action energy of a fixed relative orientation to be com-
puted quickly without the need for statistical-mechanical
ensemble averages with explicit solvent. In this work, we
utilize an implicit solvent model inspired by the protein
docking community and parameterized from experimen-
tal B2 data.64

For various reasons, experimental measurement of
B2 values was used to validate the CG models. B2

is the orientationally-averaged interaction between two
particles65 and is one way to compare the relative average
attraction or repulsion in different models. B2 values are
often used to characterize protein phase behavior.45,66,67

A more positive B2 indicates more repulsions, while
a more negative B2 indicates more attractions. In
addition, experimental measurement of B2 from light
and small-angle scattering intensity allows comparison
with theoretical models46 and prediction of liquid-liquid
phase separation.68 Furthermore, extended correspond-
ing states69 utilize B2 to collapse phase diagrams of
short-range models. In the context of comparing tab-
ular anisotropic potentials at various resolutions, B2

was also shown to be a useful metric for cubic59 and
cylindrical60,61 colloids. Fitting B2 of models to experi-
mental data is also simplified by the prediction of B2 us-
ing derivatives.70–72 On the other hand, the prediction of
high-concentration behavior with low-concentration met-
rics, such asB2, can be difficult. This may be due to some
interactions that may not contribute greatly to B2 at low
concentrations,but may play an important role at higher
concentrations.38,49,73,74

MC simulations play a central role in this article for
two reasons. The first reason is that precomputation of
the AA potential is simplified when only the potential en-
ergy is required, as opposed to the forces and torques re-
quired in MD. The second reason is that Mayer-sampling
MC (MSMC)75 is an efficient algorithm for computing B2

and validating the CG models.
This article applies a CG methodology for precomput-

ing interactions between rigid bodies to lysozyme and
lactoferrin as a single rigid body in Section II. Varying
levels of precomputed angular and distance resolutions
are compared against B2 using MSMC in Sections III.
The NISTmAb CG model of three rigid bodies connected
by a flexible hinge region is then simulated using MSMC
in Section IV. Finally, conclusions and future work are
discussed in Section V.

II. LYSOZYME AND LACTOFERRIN AS A SINGLE
RIGID BODY

This section outlines the CG methodology by repre-
senting lysozyme and lactoferrin as isolated rigid bodies.
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FIG. 1: (1a)-(3a) Lysozyme (PDB ID 4LYT) structures
are shown with default VMD76 atom name coloring. In
addition, 3 Å mauve-colored beads were embedded in
the surface with a solid-angular resolution of (1) 18◦

with nk = 10, (2) 12◦ with nk = 15, and (3) 10◦ with
nk = 18. (1b)-(3b) The blue transparent surface shows
the VMD surface representation generated by rolling a
3 Å bead about all atoms. The solid mauve surface

shows the surface generated from the mauve beads for
each resolution above.

The major assumption we make with this CG approach is
that the pair interaction between CG sites is effectively
described with six rigid body degrees of freedom. Al-
though in this article, we assume the atomic structure of
the protein is rigid, the potential function may in prin-
ciple contain some integrated flexible degrees of freedom
or multiple configurations.55 By assuming a rigid atomic
structure, the AA interactions between two rigid bodies
can be computed and stored as a function of their relative
orientation. This stored table of interactions is referred
to in this work as the CG model, where CG simulations
interpolate from the stored AA interactions during MC
simulations, and each rigid body is represented by a sin-
gle anisotropic site. Because the computational cost of
one anisotropic site roughly corresponds to that of three
isotropic sites, a CG model of a protein with 6 × 103

atoms is over 103 times faster than an AA simulation.
The AA interactions may be precomputed over a finite
number of relative orientations. This is referred to as the
resolution of the CG model.

A. Orientational resolution and uniqueness

We will begin by illustrating varying levels of orien-
tational resolution of CG models. The top portion of
Fig. 1 shows the rigid structure of lysozyme from the
Protein Data Bank (PDB) ID 4LYT77 with mauve beads

embedded in the surface to visualize orientations for the
anisotropic CG model at various levels of angular reso-
lution. Each mauve bead represents a single polar and
azimuthal angle emanating from the center of mass of the
lysozyme onto the surface. In Fig. 1, the z-axis and the
pole of the azimuthal angle are perpendicular to the page
surface, as evidenced by the mauve beads’ approximately
circular surface ring structures.

The orientational or angular resolution is determined
by the parameter nk, the number of orientations per 180◦

in each solid angle. In this work, the nk orientations were
linearly spaced in each angle to enable fast linear inter-
polation between them. As nk increases, the number
of mauve beads increases in Fig. 1. Therefore, a larger
nk better represents the AA structure at the computa-
tional cost of a larger number of relative orientations.
For nk = 12, there are 180◦/12 = 15◦ between each an-
gle, corresponding to an approximate 5 Å arc length of a
19 Å radius sphere.78

The lower half of Fig. 1 shows the surface of the atomic
structure as seen by a 3 Å bead with a translucent blue
surface, while the CG model is shown in mauve. For
nk = 10 (18 degree resolution) on the left, the AA surface
is significantly larger than the CG surface. This can be
attributed to the lack of mauve beads near the solvated
side chains on the top center and bottom left. However,
for nk = 18 or 10 degree resolution on the right, the AA
and CG surfaces are nearly identical in Fig. 1.

The parameter nk is used for each of the five angles
representing the orientations of two rigid bodies. These
five angles include the polar and azimuthal angles of the
vector connecting the center of masses of the two rigid
bodies and the three Euler angles of the second rigid
body, with the first rigid body always held at a fixed ref-
erence orientation. If the two rigid bodies are identical,
symmetry removes half of the relative orientations, and
the total number of orientations is (nk + 1)3(2nk + 1)2.
Otherwise, if the two particles differ, the total number of
orientations is (nk +1)2(2nk +1)3. In both cases, a frac-
tion of these orientations are duplicates. For example,
consider when the polar angle in spherical coordinates is
zero. In this case, all possible values of the azimuthal
angle result in an identical separation vector. Duplicate
orientations also occur in Euler angles.

A brute-force numerical method was used to determine
unique orientations by verifying if the coordinates in a
rigid body with the given relative orientation are identi-
cal to an existing set of coordinates. The computational
cost for determining unique orientations is negligible be-
cause, for a given nk, the process does not need to be
repeated. The use of quaternions may also alleviate this
issue. Figure 2 shows the total number of orientations
and the fraction of those orientations that are unique as
a function of nk, the number of orientations per 180◦.
The process of determining unique orientations is imple-
mented in the first step of a Free Energy and Advanced
Sampling Simulation Toolkit (FEASST) version 0.25.1
tutorial in the aniso plugin.79,80



4

FIG. 2: The total number of orientations as a function
of nk, the number of orientations per 180◦, is shown in
black for (circle) interactions between identical pairs
and (x) interactions between different pairs. The
fraction of unique orientations is shown in red.

The choice of linearly spaced angles for approximately
globular rigid bodies leads to greater resolution near the
poles and lower resolution at the equator, as illustrated
by the beads in Fig. 1. Future improvements to this
method may incorporate spacing that is more uniform
on the surface of a sphere. More spherically uniform
representations may reduce the cost of the generation of
the table by requiring less pre-computed orientations for
a given minimum resolution near the equator, but may
also increase the interpolation cost during CG simula-
tions relative to linear interpolation. In this article, we
use linear spacing to enable fast interpolation during the
CG simulations. While we do not compare and contrast
different interpolation methods in this article, it is also
worth noting that the increased resolution at the pole
could be used to orient the rigid bodies in such a way as
to increase the resolution at a particularly important site
such as a binding site, or a location where the rigid body
is very non-spherical. Furthermore, CG potentials pre-
computed non-uniformly are more an issue of efficiency
than correctness, as opposed to other cases such as the vi-
olation of detailed balance in the generation of proposed
MC trial orientations.

B. Atomistic (AA) implicit solvent model

This subsection concerns the interaction energy, U , be-
tween two rigid protein structures using AA models for
a given orientation. The AA interaction was previously
parameterized with excluded volume van der Waals and
screened charge interactions in an implicit solvent fit to
B2 data.64 Section IIC, CG models are benchmarked
against AA and experimental B2.
The implicit solvent model used in this work was in-

spired by the work of Qin and Zhou.64 The excluded vol-

FIG. 3: The interaction energy, U , between two rigid
lysozymes (PDB 4LYT at pH 6) as a function of

separation distance, r, at a fixed orientation. The solid
blue line is for no smoothing; green is 1 Å smoothing,
black is 2 Å smoothing, and red is 4 Å smoothing with
I = 0.15 M. The black circles are for I = 0.15 M (with
nz = 7 defined in Sec. II C). The black dashed line and
the x markers are similar as above but for I = 0.05 M.

ume and van der Waals interaction parameters are given
by Autodock4,81 while the charges are from parameters
for solvation energy (PARSE).82 Using this model, the
charge screening, determined by the ionic strength, I, is
approximated by the Debye length,

1/κ =

√
ϵrϵ0kBT

2Ie2
, (1)

where I is the ionic strength, e is the elementary charge,
ϵr is the dielectric constant, ϵ0 is the vacuum electric
permittivity, kB is the Boltzmann constant, and T is the
temperature.
The van der Waals interaction term was multiplied by

a single fitting parameter,64

vs =
0.18(0.27Mw + 80)

Mw + 80
, (2)

where Mw is the molecular weight in kilodaltons. This
parameter was fit previously for five different proteins
over a pH and ionic strength range.64 In this article, we
utilize this AA model with a modified cutoff.
We modified the AA interaction cutoff for the follow-

ing reasons. In principle, MSMC75 does not require a
cutoff of AA interactions. A cutoff is required because
interactions must be precomputed to a finite distance for
storage and interpolation. In this work, the atomic cutoff
distance rc = 5/κ is five Debye lengths.
Interaction energies for a given orientation were ob-

tained as follows. The pdb2pqr3083 software converted
PDB coordinate files to PDB with charge and radius
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(PQR) files with PARSE82 charges and Protein pKa

(PROPKA)84 protonation states for a given pH after re-
moving water molecules from the PDB file. The PQR
file was then converted to an input file for the FEASST
MC simulation software79 to obtain the energy as a func-
tion of relative orientation and separation distance. This
process is implemented in the write fstprt function in
the coarse grain pdb module of pyfeasst, where this
typeset is used through the article to identify software-
specific names.

Fig. 3 illustrates the interaction energy between two
rigid lysozymes using this AA potential for two different
ionic strengths. The orientation of lysozyme is shown in
the inset and given by the spherical angles (0, 0) and
Euler angles (−180, 0, −180) degrees with the 4LYT
PDB structure as the reference frame, which results in
a relative displacement along the z-axis. The Euler an-
gles are given in the proper, active intrinsic z-x-z or “x-
convention.”

The blue line in Fig. 3 contains no smoothing on the
atomic cutoff distance, and the apparent noise in the
curve is due to charges with significant contributions at
rc. The noise is significantly reduced when interactions
are smoothly interpolated to zero between distances of
rc−rs and rc, where rs is the smoothing distance. Fig. 3
shows various smoothing distances, where rs = 2 Å was
utilized for the CG models in the remainder of this work.
Larger or smaller values of rs lead to more noise in Fig. 3.

The effect of the ionic strength, I, on charge screen-
ing is also shown by the black solid and dashed lines in
Fig. 3 for I = 0.15 and I = 0.05 M, respectively, where
the unit M is defined as mol NaCl per L. With more
salt, I = 0.15 M NaCl in the solution, the charges are
well-screened, and the interaction energy is dominated
by a van der Waals well that smoothly tends to zero at
a larger distance. However, with less salt, I = 0.05 M
NaCl, charge repulsions increase interaction energy to
positive values, depending upon the orientation and pro-
tein of interest. These models include short-range attrac-
tion and long-range repulsion that play significant roles
in the stability of protein solutions.48,85,86

C. Distance resolution

The CG model distance resolution is determined by the
parameter nz. Assuming smoothly rounded surfaces with
mostly positive or zero curvature, the distance at which
a given orientation leads to excluded volume overlap is
defined as rh. In this case, distances smaller than rh have
infinite energy, while the interaction energy for distances
greater than rh is computed using the van der Waals and
charged terms described earlier.

The contact distance, rh, was found using a mini-
mization algorithm as implemented in FEASST version
0.24.579 GoldenSearch.87 The objective function of dis-
tance was defined as follows. When hard particle overlap
was detected for a given distance, the objective func-

tion returned a large number divided by distance to fa-
vor larger distances for the next guess. When there was
no overlap, the objective function was set to the distance
to favor smaller distances in the next guess. The mini-
mization used a tolerance of 10−4 Å. Once the minimum
of the objective function was found, twice the tolerance
was added to avoid numerical precision issues (e.g., a new
energy calculation at precisely rh could lead to overlap).
The contact distance calculation is implemented in the
second step of a FEASST version 0.25.1 tutorial in the
aniso plugin.
Interactions beyond distances of rh+rc are zero, where

rc is the atom-based interaction cutoff distance. We lin-
early interpolate the interactions to zero at the cutoff
over a short distance of rs. For this reason, interaction
energies are tabulated between rh and rh+rc−rs. Here,
we transform this distance as a parameter that varies
from z = 0 at rh to z = 1 at rh + rc − rs,

z =
rγ − rγh

(rh + rc − rs)γ − rγh
, (3)

where γ = −4 is a stretching exponential parame-
ter that increases resolution for smaller distances when
negative.59,60 The distance resolution is given by nz, the
number of distances that linearly span from z = 0 to 1.
In Fig. 3, the symbols show the resolution nz = 7 with
γ = −4. During the CG simulations, values for z between
the nz values were linearly interpolated. The energy pre-
calculation calculation is implemented in the third step
of a FEASST tutorial in the aniso plugin.
Assuming a single rh for a given relative orientation

might lead to issues in appropriately accounting for con-
figurations where the two proteins form a hook, latch,
or handshake configuration (e.g., multiple infinite maxi-
mums when infinite energies occur at distances that are
between finite energy distances). These configurations
are infrequent for the rigid bodies considered in this work.
In the rare case U was highly repulsive for z > 0, and U
was set to 5 kJ/mol, so linear interpolation did not lead
to overlap-like energies in the entire region above and
below this value of z, as implemented in the FEASST
version 0.24.5 with the max energy set keyword in the
class TabulateTwoRigidBody3D.79

III. SECOND OSMOTIC VIRIAL COEFFICIENTS (B2)
OF SINGLE RIGID BODIES

In Section II, the CG model of lysozyme was defined
as a single rigid body represented by one anisotropic in-
teraction site. This section uses MSMC to compute B2

as benchmarks to compare the CG models of various res-
olutions against the AA values and experimental results.
The MSMC B2 calculation is implemented in the fourth
step of a FEASST version 0.25.1 tutorial in the aniso
plugin. Although B2 may be computed without MSMC
either by directly integrating the precomputed interac-
tions or using an FFT approach,64 we did not systemati-
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cally compare the efficiencies of these different methods.
An example of integration of the precomputed interac-
tions can be found in the VisitModelInnerTable class
of FEASST or the anglescan example in the open source
software named Faunus.88

A. Mayer-sampling Monte Carlo

MSMC75 computed B2 using FEASST version
0.24.5.79 Because the models use implicit solvent, the
methodology for osmotic B2 is identical to that of gas
phase B2 calculations, where the solvent degrees of free-
dom are integrated into the potential model and, there-
fore, are not sampled during MSMC. As opposed to
Metropolis MC, MSMC only requires two bodies to com-
pute B2, which is performed at infinite dilution and with-
out the need for periodic boundary conditions in the im-
plicit solvent. In addition, excluded volume overlap is al-
lowed in MSMC and is an essential part of the sampling
technique, which aims to use MC integration to obtain
the Mayer function divided by the Mayer function of a
reference potential. The reference potential is often cho-
sen as a hard sphere with known B2 and of appropriate
size that is well sampled during the MSMC simulation
with the full potential, although other choices are also
possible.89

To begin MSMC, two rigid bodies were placed in over-
lapping identical positions and orientations. Trial moves
include translation of only the second rigid body or rota-
tions of either rigid body. The MSMC reference potential
was a hard sphere of diameter σr at the center of mass
of the rigid body. The maximum translation was op-
timized 103 times during an equilibration period every
105 trials to reach a target acceptance of 25% Trial ro-
tations were generated by perturbing quaternions with a
weighted random quaternion,90 and this weight was op-
timized in the same fashion as the maximum translation.
The simulations were terminated after 3 × 109 trials for
CG lysozyme, which required 5 days of central process-
ing unit (CPU) clock time on high performance compute
nodes with dual Intel® Xeon® Silver 4216 CPUs with
a total of 32 processors per node at 2.10 GHz base fre-
quency (see disclaimer at the end of Section VII). To
obtain the standard error of the mean, every condition
and parameter set was simulated independently on each
of the 32 processors with different random number seeds.
For the slower AA simulations, maximum displacement
and rotation parameters were tuned during an initial
equilibration period 102 times every 102 trials, with over
1.5×106 trials for lysozyme. For the even larger lactofer-
rin (PDB 1BLF), MSMC with 1.5 × 105 trials were run
for 2 weeks. The σr was 30 and 50 Å for lysozyme and
lactoferrin, respectively. The B2 values were reported in
units of 10−4 mol ml g−2 using molecular weights from
the PQR files described in Section II B.

FIG. 4: The B2 of lysozyme (PDB ID 4LYT) with only
excluded volume interactions as a function of the

number of orientations per 180◦, nk for the CG model.
Error bars are the standard error of the mean and are
smaller than the symbols. The solid horizontal line
shows the average of the AA model value, while the

dashed lines outline the range of uncertaintly from the
standard error of the mean.

B. B2 of AA and CG lysozyme

In Subsection IIIA, MSMC simulations were used to
compute B2 for both lysozyme and lactoferrin using AA
models and CG models that assumed the entire proteins
were a single rigid body in their PDB structure with
an implicit solvent AA potential model as described in
Section II B. Figure 4 shows the excluded-volume B2 of

lysozyme (4LYT), B4LY T,excl
2 for the AA model and the

CG model as a function of the angular resolution, nk,
which is the number of angles per 180◦ in each of the
five relative orientation angles. Only hard particle inter-

actions are included in the excluded-volume B4LY T,excl
2 ;

van der Waals and screened charge terms are omitted.
For the AA model, B2 = 3.171 ± 0.002 (10−4 mol ml
g−2), where ± is the standard error of the mean from
32 independent simulations. As shown in Fig 4, as nk

increases, B4LY T,excl
2 reaches a plateau. The B2 of CG

simulations approach the AA B2 as angular resolution,
nk increases but is still offset at the largest values of nk.
This may be attributed to the assumption that rh is well
defined for a given orientation, which is invalidated by
hook, latch and handshake configurations. Overall, the
excluded-volume B2 of the CG model agrees well with
that of the AA model.

Because the excluded volume interactions are repre-
sented by a single distance, rh, for a given relative ori-
entation, the distance resolution, nz, plays no role in

the calculation of B4LY T,excl
2 . Therefore, B4LY T,excl

2 was
used to determine a reasonable value of nk that represents
the shape. We select nk = 12 as a reasonable trade-off
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FIG. 5: The B2 of lysozyme (PDB ID 4LYT at pH 6) as
a function of the number of distances, nz, per

orientation with nk = 12. Error bars are the standard
error of the mean and are smaller than the symbols.
The solid horizontal line shows the average of the AA

model value, while the dashed lines show ± the
standard error of the mean.

between the accuracy shown in Figs. 1 and 4 and the
computational cost of increasing nk implied in Fig. 2.

The B2 of lysozyme (PDB ID 4LYT), B4LY T
2 , with

all interactions including van der Waals and screened
charges is shown in Fig. 5 for both the AA model and
the CG models with varying distance resolution, nz, at
fixed orientational resolution, nk. For low nz, attrac-
tions are overestimated due to the shape of the short-
range attraction, as shown in Fig. 3. This leads to a
fortuitous cancellation of errors when nz = 3, resulting
in a prediction close to the AA value. However, as nz

increases, B4LY T
2 reaches a plateau that is shifted from

the AA value. One possible explanation for why B4LY T
2

is shifted from the AA value is because of the fixed ori-
entational resolution of nk = 12. In order for the CG
model to converge to the AA value with increasing reso-
lution, both nk and nz would need to be increased. For
the remainder of this work, we use nz = 7 as a reasonable
trade-off between accuracy and computational cost. We
omit nz = 3 because the fortuitous cancellation of errors
cannot be guaranteed for other proteins or other solution
conditions. If we wish to match the virial coefficient of
the CG models to the AA model, we can do so by scaling
the interactions without reducing the resolution of the
CG model. Instead, nz = 7 shows a reasonable level of
convergence to the plateau value.

With nz = 7 chosen as a reasonable distance resolu-
tion, we now revisit the orientational resolution of the
full potential. Figure 6 shows the B4LY T

2 as a function
of nk, the number of orientations per 180◦, for nz = 7.
Similar to Fig. 4, the CG model slowly moves toward the
AA value as nk increases after an initial jump at very low

FIG. 6: The B2 of lysozyme (PD ID 4LYT at pH 6) as a
function of the number of orientations per 180◦, nk, for
nz = 7. Error bars are the standard error of the mean
and are smaller than the symbols. The solid horizontal
line shows the average of the AA model value, while the
dashed lines show ± the standard error of the mean.

resolution. By coincidence or fortuitous cancellation of
errors, nk = 1 is the closest to the AA value. Otherwise,
the attractions steadily increase with nk toward the AA
value. Similar to Fig. 5, the CG model does not quite
reach the AA value, likely because the distance resolu-
tion, nz, is fixed, in addition to the other assumptions
discussed for the results in Figs. 4 and 5.

Computational costs make investigating higher val-
ues of nk and nz impractical. Generating such a large
precomputed table from AA interactions becomes very
costly. When the tables become large, interpolation dur-
ing the simulation can also slow down because the CPU
cache is less likely to have useful information for the
next query. A simulation typically should not require
more than 1 or 2 gigabytes of random access memory
(RAM) per processor on modern high-performance com-
puter clusters. To further reduce memory requirements,
the table was stored in single precision.

For the values of nk studied up to the limit of prac-
ticality, the CG model has fewer attractions than the
AA model. We hypothesize that the limited number of
orientations may miss some important attractive patchy
interactions, which contribute to the virial coefficient.
Previous work in the molecular surface recognition and
docking literature can reach higher resolutions91 that are
feasible when only the most attractive orientations are
stored and highly optimized methods are used in the ori-
entational search.63

Fig. 7 compares the CG and AA models with ex-
perimental data for lysozyme at pH of 4.5 for various
ionic strengths. Experimental data were estimated using
WebPlotDigitizer97 for illustrative purposes only. There
is some variation in the experimental data, which could
be due to measurement uncertainty or possibly different
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FIG. 7: The B2 of lysozyme at pH 4.5 from previously
published experimental data92–96 is shown with open

symbols and the blue circle. The CG models for various
PDB IDs (4LYT, 1AKI, 2D4I, 2D4J) as a function of
the ionic strength, I, with nk = 12, nz = 7, are shown
by the lines. AA values for 1AKI are shown in purple
and the FMAP64 results with a different protonation
state are also shown by the black dots. Error bars are
the standard error of the mean and may be smaller

than the symbols.

formulation conditions, such as different buffers or other
technical details of the instruments. The previous com-
putational results using the FFT-based method for Mod-
eling Atomistic Proteins–crowder interactions (FMAP)
for computing B2 by Qin et al. are also shown in Fig. 7.64

Their AA results differ from ours because for the spe-
cial case of lysozyme, Qin et al. used experimental pKa

determined at a temperature of 25◦ C and 0.1 M ion
strength, while this work used PROPKA84 assignments
from pdb2pqr30.83 Although the approach used by Qin
et al. agrees more with the experiment over a wide range
of I; we treat all of the proteins with the same method-
ology that is easy to apply to the NISTmAb or other
proteins of interest.

One major difference between the previously published
experimental and simulation results and the results in
this work is the increase in B2 as ionic strength increases
beyond 0.4 M. This increase of B2 is a consequence of
the AA model described in Section II B. Fig. 8 shows the
potential energy as a function of protein center-of-mass
separation distance at a fixed orientation for various ionic
strengths. At the lowest I = 0.1 M, there is a short-range
attraction and a long-range repulsion. As I increases,
the charges are more screened, and the long-range repul-
sion no longer results in positive potential energy values
at intermediate separation distances. In addition, U at
contact decreases with increasing I until it reaches a min-
imum near I = 0.3 M and then gradually increases to less
attractive values. From I = 0.3 to 0.9 M, the attractive
well width also decreases. This could explain the increase
in B2 with I above 0.3 M shown in Fig. 7, which is not
seen in the experiments. Another explanation is that the
approximation of Eq. 1 breaks down for higher values of

FIG. 8: The potential energy of the 1AKI CG model as
a function of separation distance for nine values of I at
a fixed orientation where all angles are their maximum

values.

I.98 Because of the different titration treatments for pH,
the difference between our results and Qin et al. is likely
due to various charge interactions.

C. B2 of AA and CG lactoferrin

We will now end our discussion of B2 for models that
assume the entire protein is a rigid object by consider-
ing a different protein. Lactoferrin is known to form a
dimer at specific ionic strengths.99 Therefore, lactoferrin
is an interesting test case to see if the CG methodology
captures specific, short-range, patchy, attractive interac-
tions. Lactoferrin is larger than lysozyme with a molec-
ular weight of over 75 kDa. Therefore, lactoferrin tests
the limits of the computational costs of the CG model.
Lactoferrin is also less spherical than lysozyme and may
be better represented as two bonded rigid objects rather
than one. Regardless, we consider lactoferrin to be a
single rigid object in this work.
The B2 of lactoferrin is shown in Fig. 9. The exper-

iments show a minimum in B2 as a function of ionic
strength, which was previously associated with the for-
mation of dimers.99–102 The AA and CG models also
show a minimum, although the minimum occurs at a
larger ionic strength of approximately I = 0.1 M com-
pared with experiments. The difference between the ex-
periment and the AA model is likely due to a number
of assumptions. These assumptions include the usage
of the rigid crystal structure, the implicit-solvent model,
approximate van der Waals and charge-screened terms,
and protonation state assignments. The specific dimer
interaction was also difficult for the MSMC simulations
to sample. This led to very large error bars around the
minimum in B2 at I = 0.1 M because some of the 32 in-
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FIG. 9: The B2 of lactoferrin (PDB ID 1BLF) at pH 7
with previously published experimental data shown by
the open circles,100 and the CG models as a function of
the ionic strength for different orientational resolution,
(blue) nk = 10 and (orange) nk = 12. AA values are

shown in green. Error bars are the standard error of the
mean and may be smaller than the symbols.

dependent simulations could find the specific dimer con-
figuration while others were not. Even though a single
MSMC simulation was run for two weeks with 32 in-
dependent replicas, the number of trials was relatively
limited due to the computational expense of this large
protein.

The CG models are also more repulsive than the AA
model. This is likely because the CG model misses im-
portant specific interactions via limited orientational res-
olution. Due to the size of lactoferrin, the same nk as
lysozyme represents a lower orientational resolution be-
cause the arc length would be larger. This is also likely
why a lower resolution CG model with nk = 10 has a
higher and more repulsive B2 than nk = 12.

IV. MULTISCALE ANTIBODY MODELS

In Section II, we modeled the entire lysozyme and
lactoferrin protein as a single anisotropic site with inter-
actions precomputed from a rigid body given the PDB
atomic structure. In this section, we develop a model for
the NISTmAb, where the antibody was modeled as a col-
lection of three rigid bodies bonded to one another with
a flexible linker or hinge. The bonded potential was pa-
rameterized from microsecond-long AA MD simulations
with explicit solvent. We then apply MSMC to the flex-
ible CG model to compute B2. For the NISTmAb, we
compare the B2 against experimental data.

FIG. 10: Illustration of the CG model of the NISTmAb.
The center of mass of the three rigid domains and hinge

are labeled, while the backbones of the three rigid
domains are shown by their ribbon representation using
VMD.76 Each rigid domain connects to the hinge at the
red circles, which form elbows. The angle of the elbow
and the length between the hinge and elbow are both
highly flexible and parameterized with NISTmAb AA
molecular dynamic simulations with explicit solvent.

A. The coarse-grained (CG) antibody as three bound rigid
bodies

As shown in Fig. 10, an antibody is made of three
relatively rigid domains connected by a relatively flexi-
ble hinge region.52 The crystallizable fragment (Fc) com-
prises approximately half of two highly conserved heavy
chains, and the antigen-binding fragment (Fab) com-
prises the other approximately half of a heavy chain com-
bined with a light chain. The rigid Fc and Fab domains
are labeled by their center of mass in Fig. 10. For the
NISTmAb, the two heavy and light chains and the two
Fabs are identical.

The flexible hinge region is made of the middle section
of the two heavy chains. Cysteine residues form disulfide
bonds between the heavy chains, and proline residues
limit backbone rotation relative to other residues. The
center of the hinge was defined as the center-of-mass
of the cysteine-proline-proline-cysteine (CPPC) residues
and labeled as the H in Fig. 10. Specifically, for the
NISTmAb PDB,103 this corresponds to the CYS, PRO,
PRO, CYS residues 229-231 of both heavy chains. The
point where the hinge is connected to each of the three
domains is shown as a red circle in Fig. 10. These three
connections form elbows, where the bond between the
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elbow and the center of each domain is held rigid. In
contrast, the bond between these three connections and
the hinge is highly flexible. The bond length between
the hinge and the three connections is allowed to change,
and the bond angle with the connections as the ver-
tex between the hinge and each of the three rigid do-
mains. These bonds will be parameterized by compari-
son with microsecond-long AAMD simulations of a single
NISTmAb in an explicit solvent.

The connections between the hinge and the three rigid
domains are defined as follows. For the rigid Fab do-
mains, the connection is defined as the center of mass of
the two residues in the heavy and light chains that form
the disulfide bond near the hinge. Specifically for the
NISTmAb PDB,103 this corresponds to the CYS residue
223 on heavy chain H and residue 213 on light chain L.
For the rigid Fc domain, the connection to the hinge
is defined as the center of mass of the proline residue
on both heavy chains just after the two glycine residues
that are part of the flexible hinge. Specifically for the
NISTmAb PDB,103 this corresponds to the PRO residue
241 on heavy chains H and V.

B. All-atom (AA) explicit solvent MD simulations

AA MD simulations of the NISTmAb with explicit sol-
vent were used to inform the flexibility of the CG models.
In particular, bonded potentials for the flexible bond an-
gles and lengths where the three rigid domains connect
to the hinge are unknown, as shown in Fig. 10. In this
subsection, we use AA MD simulations of the NISTmAb
to investigate the minimum and maximum bond lengths
and minimum bond angle observed as the antibody is
allowed to move freely in solution.

The AA MD simulations were started from two con-
formations: a “hands-up” Y-shaped model and the
atomic model of the NISTmAb, with an alternative
hinge conformation that better matched deposited crys-
tal structures of intact mAbs.103–105 The automated tool
prepareforleap106 was used to map glycans, determine
cysteine crosslinks, and set amino acid protonation states
assuming a pH of 7. Asiaylated, bi-antennary core fu-
cosylated complex (G0F and G1F) glycoforms were in-
cluded and were based on crystal structure coordinates
from the NISTmAb Fc domain.104 These glycoforms are
consistent with the most abundant glycoform class identi-
fied via mass spectrometry.107 Structures were built using
tleap in AmberMD.108 The ff14SB protein force field,109

glycam 06j-1 glycan force field,110 extended simple point
charge (SPC/E) water model,111 and Joung-Cheatham
monovalent ion force field112 were used to parameterize
the system. To reproduce multiple experimental ion con-
centrations, the structure of NISTmAb was simulated
in either neutralizing conditions (ten Cl− counterions),
0.150, 0.5 or 1 M NaCl (Table I). Ion positions were ran-
domized by swapping coordinates with water molecules,
6 Å away from the solute and 4 Å away from each other,

fourtimes, and positions saved, generating four starting
structures with different solvent positions for each sys-
tem.

Starting structures (four per system) were minimized
and equilibrated by a ten-step protocol, including succes-
sive rounds of minimization and MD with decreasing po-
sitional restraints in an isobaric-isothermal (NPT ) and
canonical (NV T ) ensemble, as described previously.113

Production dynamics were performed using the Am-
berMD engine114 with graphics processing unit acceler-
ation and single precision and 64-bit fixed point inte-
ger arithmetic. Solute hydrogen masses were reparti-
tioned to 3.024 Da by reducing the mass of the heavy
atom to which the hydrogen is bound, with rigid bond
constraints,115 enabling a 4 fs timestep for production
dynamics.116 A direct space cutoff of 9 Å was used
for particle mesh Ewald.117 For NPT simulations, the
pressure was set to 1 atm and regulated using a MC
barostat.118 The temperature was set to 300 K and reg-
ulated by a Langevin thermostat119 using a collision fre-
quency of 5 ps−1 and setting a flag to prevent synchro-
nization artifacts.120 For NV T simulations, the temper-
ature was set to 300 K and regulated by a Langevin
thermostat119 using a collision frequency of 2 ps−1. Sim-
ulations were run, and trajectories were saved for either
1 µs or 500 ns. Table I contains simulation details of each
system.

To parameterize the CG 7-site model, analyses were
performed on 212 500 total frames covering 22 total mi-
croseconds of MD simulation. All frames from all sim-
ulations detailed earlier were used. Distances were cal-
culated between the center-of-mass (COM) of the CPPC
motif in the hinge region and the COM of two residues
making up the last Fab residues (CYS-CYS) or start of
the Fc domain residues (GLY-GLY) before the hinge re-
gion started. Vector math was performed in CPPTRAJ
to calculate the angles between domains.121

The probability of the distance between where the
three domains connect to the hinge and the center of
the hinge is shown in Fig. 11. These probabilities were
computed from the aggregate of all trajectories summa-
rized in Table I, which include different salt concentra-
tions, starting configurations, periodic boundaries, and
ensembles. All of the data was included to find the lim-
its of flexibility, which we will use as an input to the CG
models. Because the CG model will include intramolec-
ular domain-domain interactions that are precomputed
from rigid AA structures, capturing the specific protein-
protein interactions that contribute to all of the minima
and maximum in the distributions shown in Fig. 11 is not
the purpose of this parameterization. Instead, we want to
know what reasonable minimum and maximum lengths
and minimum angles are needed for hinge flexibility.

From the AA explicit solvent MD simulations shown in
Fig. 11, we choose round numbers for the minimum and
maximum lengths of the CG model of 8 and 25 Å, respec-
tively, for the Fab domains and 12 and 26 Å, respectively,
for the Fc domain. These choices will be further tested



11

TABLE I: Full-length NISTmAb AA simulation details of an aggregate 22 microseconds of MD.

I (M) Start id Water Cl− Na+ Atoms Time per replica (µs) Replicas Ensemble
0 1 122 784 10 0 358 943 1 4 NPT
0 2 166 652 10 0 482 747 1 4 NPT

0.15 1 112 050 377 367 357 475 1 4 NV T
0.15 2 101 481 377 367 325 768 1 4 NV T
0.5 1 110 336 1234 1224 354 047 0.5 4 NV T
1 1 107 888 2458 2448 349 151 1 4 NPT

FIG. 11: The probability of the distance between the
center of the hinge and where the three domains

connect to the hinge, as described in Fig. 10, for (solid
lines) AA explicit water MD with (blue) Fab1-H, (red)

Fab2-H, (black) Fc-H, and (dashed lines) the CG
model. The results for the CG model used only

excluded volume interactions without van der Waals or
screened charge interactions, while the results for the

AA model include the full potential and span a range of
salt concentrations.

by comparing the distribution with CG MC simulations
of a single antibody with the MD results and with exper-
imental data for the radius of gyration of the flexible CG
model.

The probability of the angle whose vertex is given by
the location where the domains connect to the hinge and
endpoints as the center of the hinge and each domain
is shown in Fig. 12. Similar to Fig. 11, the probabili-
ties include simulations over various solvent conditions
to find the minimum angle that will be input to the CG
MC simulations. Again, we choose round numbers for
the minimum according to the MD simulations. In this
work, we choose 70◦ as the minimum angle for all three
domains. The maximum angle is 180◦, as expected for a
highly flexible hinge. The Fab1 had an angle distribution
closer to Fc than Fab2, but the minimum angle used in
the CG model was the same for all three domains.

FIG. 12: The probability of the angle whose vertex is
given by the red circles described in Fig. 10 is shown

with the same colors as described in Fig. 11.

C. Flexible coarse-grained model using
configurational-bias MC

In Subsection IVB, AA MD simulations were per-
formed to obtain the minimum and maximum bond
lengths and minimum angle for the flexible hinge in the
CG model. In this subsection, we use configurational-
bias (CB) MC122 to simulate the flexible CG model with
three anisotropic interaction sites bonded by the flexi-
ble hinge region. To simulate a highly flexible antibody
hinge, the bonded potential energy is zero when the bond
lengths and angles are within the allowed range and in-
finite when outside of this range.

Each CB trial proceeds as implemented in FEASST
version 0.24.5 BondSquareWell and AngleSquareWell
potentials with TrialGrow bond and rigid body angle
keywords.79 Randomly select one of the three rigid do-
mains. Place the connector of that domain randomly in
a spherical shell within the allowed bond distances. Ran-
domly choose an angle according to the fully flexible sine
distribution that is within the allowed angle range. Place
the center of the domain uniformly randomly about the
circle of allowed positions given the angle. Accept or
reject the trial according to the change in energy that
includes intramolecular and intermolecular interactions.
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FIG. 13: The probability of the radius of gyration of
the CG model of the NISTmAb for pH= 6, I = 0.15 M,
nk = 12, and z = 7 is shown with the solid lines. The

solid vertical line is the experimental value of 49 Å, and
the dashed lines show the experimental standard
deviation of 1.2 Å.123,124 The dotted vertical lines

correspond to the lower and upper limits of 39 and 55 Å
from previous MC methods.125 The average from the

CG simulations in this work was 47.31 Å with a
standard error of the mean of 0.05 Å.

Figs. 11 and 12 show the resulting bond and angle
distributions, respectively, for a CG MC simulation of a
single NISTmAb with only excluded volume interactions
and no van der Waals or screened charge interactions.
Only excluded volume interactions were included to il-
lustrate the expected distributions for a highly flexible
antibody. These bond potentials should be independent
from the specific Fc and Fab domain interactions for
reuse with other mAbs with the same hinge structure.
Despite omitting highly specific interactions between the
domains, the overall shape of the bond and angle distri-
butions are represented with such a model. For example,
the bond distance probability is expected to grow with
distance according to random point picking in a spherical
shell. In addition, the bond angle probability is expected
to reach a maximum according to the expected sine dis-
tribution for random point picking on the surface of a
sphere. Although specific features appear in the distri-
bution due to specific interactions between the domains
in the MD simulations, the CG model aims to capture
these effects using the precomputed AA potentials.

The flexible potential for the CG model is validated
by comparison of the radius of gyration with experimen-
tal data, as shown in Fig. 13. A MC simulation of a
single CG NISTmAb was performed in a 496 Å peri-
odic box with 3 × 109 CB trials that include the full
intramolecular potential with excluded volume, van der
Waals and screened charges with solution conditions of
pH= 6 and I = 0.15 M, and CG resolutions of nk = 12

FIG. 14: (Top) Second virial coefficient, B2 of the Fab
domain of the NISTmAb from (black) previous

scattering experiments67 and (blue) MSMC with a CG
model, nk = 12, nz = 7, pH 6. (Bottom) B2 of the

entire NISTmAb for (solid lines with a circle) pH 6 and
(dashed lines with x) pH 3.

and nz = 7. The radius of gyration was computed by
back-mapping the atomic positions of the rigid domains
given the anisotropic site orientations, while all atoms
were assumed to have the same mass.

D. Second osmotic virial from coarse-grained MSMC with
CB

In this subsection, MSMC with CB of two proteins is
used to compute B2 of both the Fab domain and the
flexible CG model of the NISTmAb shown in Fig. 10.
The B2 values of the NISTmAb Fab domain, shown in
the top panel of Fig. 14 for pH 6, were computed using
the methodology described in Section IIIA for a single
rigid domain, with over 4×109 trials. The σr values were
45 and 85 Å for the Fab and NISTmAb, respectively. The
B2 values of the NISTmAb Fab follow similar trends in
ionic strength dependence as the experimental values but
are more repulsive than observed in the experiment. This
is likely due to the CG model missing specific attractive
interactions at short range due to the limited resolution
in orientation and distance. Note that the experimental
values depend on the buffer, and the effect of different
buffers is not captured in our implicit solvent AA or CG
models. The B2 of the CG model of the NISTmAb Fab
compared best with the experiment around I = 0.3 M.
For MSMC with a flexible CG model, rigid translations

and rotations were utilized as described in Section IIIA,
as well as a flexible CB trial that is different from the
canonical ensemble as described in Section IVC. There
are two stages for acceptance and rejection of a trial.
The first stage is to find a new configuration that is
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acceptable according to the intramolecular interactions.
The second stage is to accept or reject the trial using
standard MSMC acceptance based on the intermolecular
interactions.52,126 In MSMC, each CB attempt proceeds
as follows. One of the three domains is partially regrown
as described for the single-mAb canonical MC, and this
regrowth is repeated as many times as necessary until
the proposed configuration is accepted according to the
Boltzmann-weighted change in the intramolecular inter-
action energy. Once a newly proposed internal config-
uration of one of the mAbs is accepted, the trial move
is accepted or rejected using the standard MSMC accep-
tance where the energy of interaction is given only by the
intermolecular interactions.52,126

The bottom panel of Fig. 14 shows the B2 values of the
flexible NISTmAb CG model compared to experiments
over a range of ionic strengths and pH 3 and 6. For pH 3,
B2 is shifted by nearly a constant factor, where the CG
model has more repulsions, as also seen by comparison
with the Fab domains. For pH 6, B2 is again shifted by a
positive constant factor relative to the experiment, but in
this case the CGB2 is much closer to the experiment than
for pH 3. For more accurate predictions with CG CB MC
simulations of hundreds of NISTmAb, the CG potential
can be scaled by fitting to match the experimental B2

values. Such a fit is expected to correct for the overall
average interaction strength while retaining the relative
anisotropic interactions.

V. CONCLUSIONS

We demonstrate a CG methodology where rigid all-
atom (AA) models with implicit solvent are precom-
puted, stored, and interpolated during MC simulations.
The computational results were compared against exper-
imental second osmotic virial coefficients (B2) and the
radius of gyration over a variety of angular and distance
resolutions. Many of the CG modeling assumptions could
be relaxed in future work at the cost of more computa-
tional effort, including explicit solvent, flexibility of side
chains, better AA models, and improved resolution and
interpolation.

In principle, representing a protein as an increasing
number of bound rigid bodies may improve the CG model
by relaxing the major approximation at the expense of
computational cost. For example, proteins can be di-
vided into parts based on their secondary structure or
amino acids.43 Such a process requires parameteriza-
tion for bonded potentials between rigid bodies. Nor-
mal mode analysis could identify relatively rigid subunits
and the motions between these domains.127 If a domain
was instead described by two or more rigid structures,
these structures could be pre-computed, and a multi-
conformation MC trial55 could be used.
One explanation for the difference between the B2

of the AA and CG models is that linear interpolation
may capture attractive patches inaccurately. On the

other hand, interpolation errors may be comparable to
or smaller than the assumptions involved in using im-
plicit solvent models. Comparisons of CG results to ex-
perimental data are also a meaningful test of accuracy.
The AA fitting parameter for the short range attractive
van der Waals attractions could be specifically parame-
terized for the CG model to fit AA or experimental data.
Future work on AA parameterization could lead to im-
proved comparison between CG models and experiments.
Future improvements to storing and interpolating may
allow the tabular values to better converge toward AA
values.
Another assumption that could be improved is that

the solvent may be represented explicitly. The use of ex-
plicit solvents would greatly increase the computational
expense of this method compared to the implicit solvent
models used in this article because the ensemble aver-
ages of the interaction energies between the rigid bodies
would need to be computed for each orientation to ob-
tain the potentials of mean force. With enough computer
resources, other solvation models may be possible.128 En-
abling explicit solvents could also be one way of incorpo-
rating co-solvents and co-solutes. On the other hand,
solutes and formulation excipients may also be modeled
by precomputing and tabulating their interactions with
the rigid domains and themselves for explicit represen-
tation in the CG model. While this study focuses on
biomolecules, the methodology could be applied to arbi-
trarily complex models.
Although this article focuses on demonstrating the CG

methodology and validation with low-concentration mea-
surements such as B2 and the radius of gyration at in-
finite dilution, future work could include comparisons of
higher-concentration measurements such as experimen-
tal small-angle scattering. Comparisons of viscosity as
a function of concentration with the experiment would
also be very informative but may require non-trivial ex-
tensions of the CG method to MD.

VI. SUPPLEMENTARY ONLINE MATERIAL

The Supplementary Online Material contains data for
all figures in comma-separated value format in the file
“fig data.zip.”

VII. ACKNOWLEDGEMENTS AND DISCLAIMER

This article was funded by the National Institute of
Standards and Technology and is not subject to U.S.
Copyright. Certain commercial firms and trade names
are identified to specify the usage procedures adequately
for reproducibility. Such identification is not intended to
imply recommendation or endorsement by the National
Institute of Standards and Technology, nor is it intended
to imply that related products are necessarily the best
available for the purpose.



14

FIG. 15: Table of contents figure.

1A. Brown, Nat. Rev. Drug Discov 22, 8 (2022).
2N. A. McGrath, M. Brichacek, and J. T. Njardarson, J. Chem.
Educ. 87, 1348 (2010).

3T. A. Waldmann, Nat. Med. 9, 269 (2003).
4S. J. Shire, Z. Shahrokh, and J. Liu, J. Pharm. Sci. 93, 1390
(2004).

5A. Matucci, A. Vultaggio, and R. Danesi, Respir. Res. 19, 154
(2018).

6S. J. Shire, Curr. Opin. Biotechnol. 20, 708 (2009).
7W. F. Weiss, T. M. Young, and C. J. Roberts, J. Pharm. Sci.
98, 1246 (2009).

8W. Wang and C. J. Roberts, Aggregation of Therapeutic Pro-
teins (John Wiley & Sons, 2010).

9C. J. Roberts, Trends Biotechnol. 32, 372 (2014).
10A. Chaudhri, I. E. Zarraga, T. J. Kamerzell, J. P. Brandt, T. W.
Patapoff, S. J. Shire, and G. A. Voth, J. Phys. Chem. B 116,
8045 (2012).

11M. M. Castellanos, J. A. Snyder, M. Lee, S. Chakravarthy, N. J.
Clark, A. McAuley, and J. E. Curtis, Antibodies 6, 25 (2017).

12J. E. Schiel, M. J. Tarlov, K. W. Phinney, O. V. Borisov,
and D. L. Davis, in State-of-the-Art and Emerging Technologies
for Therapeutic Monoclonal Antibody Characterization Volume
3. Defining the Next Generation of Analytical and Biophysi-
cal Techniques, ACS Symposium Series, Vol. 1202 (American
Chemical Society, 2015) pp. 415–431.

13J. P. Marino, R. G. Brinson, J. W. Hudgens, J. E. Lad-
ner, D. T. Gallagher, E. S. Gallagher, L. W. Arbogast, and
R. Y.-C. Huang, in State-of-the-Art and Emerging Technologies
for Therapeutic Monoclonal Antibody Characterization Volume
3. Defining the Next Generation of Analytical and Biophysi-
cal Techniques, ACS Symposium Series, Vol. 1202 (American
Chemical Society, 2015) pp. 17–43.

14M. M. Castellanos, N. J. Clark, M. C. Watson, S. Krueger,
A. McAuley, and J. E. Curtis, The Journal of Physical Chem-
istry B 120, 12511 (2016).

15Y. Zhai, N. S. Martys, W. L. George, J. E. Curtis, J. Nayem,
Y. Z, and Y. Liu, Structural Dynamics 8, 024102 (2021).

16I. Yu, T. Mori, T. Ando, R. Harada, J. Jung, Y. Sugita, and
M. Feig, eLife 5, e19274 (2016).

17D. E. Shaw, J. Grossman, J. A. Bank, B. Batson, J. A. Butts,
J. C. Chao, M. M. Deneroff, R. O. Dror, A. Even, C. H. Fenton,
A. Forte, J. Gagliardo, G. Gill, B. Greskamp, C. R. Ho, D. J.
Ierardi, L. Iserovich, J. S. Kuskin, R. H. Larson, T. Layman,
L.-S. Lee, A. K. Lerer, C. Li, D. Killebrew, K. M. Mackenzie,
S. Y.-H. Mok, M. A. Moraes, R. Mueller, L. J. Nociolo, J. L.
Peticolas, T. Quan, D. Ramot, J. K. Salmon, D. P. Scarpazza,
U. B. Schafer, N. Siddique, C. W. Snyder, J. Spengler, P. T. P.
Tang, M. Theobald, H. Toma, B. Towles, B. Vitale, S. C. Wang,
and C. Young, in SC ’14: Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage
and Analysis (2014) pp. 41–53.

18M. M. Rickard, Y. Zhang, M. Gruebele, and T. V. Pogorelov,
J. Phys. Chem. Lett. 10, 5667 (2019).

19G. A. Voth, Coarse-Graining of Condensed Phase and
Biomolecular Systems (CRC Press, 2008).

20J. K. Cheung and T. M. Truskett, Biophys. J. 89, 2372 (2005).
21J. K. Cheung, P. S. Raverkar, and T. M. Truskett, J. Chem.
Phys. 125, 224903 (2006).

22V. K. Shen, J. K. Cheung, J. R. Errington, and T. M. Truskett,
Biophys. J. 90, 1949 (2006).

23J. K. Cheung, V. K. Shen, J. R. Errington, and T. M. Truskett,
Biophys. J. 92, 4316 (2007).

24V. K. Shen, J. K. Cheung, J. R. Errington, and T. M. Truskett,
J. Biomech. Eng. 131, 071002 (2009).

25V. Ramasubramani, T. Vo, J. A. Anderson, and S. C. Glotzer,
J. Chem. Phys. 153, 084106 (2020).

26M. A. Blanco, mAbs 14, 2044744 (2022).
27S. Izvekov and G. A. Voth, J. Chem. Phys. 123, 134105 (2005).
28A. Chaudhri, I. E. Zarraga, S. Yadav, T. W. Patapoff, S. J.
Shire, and G. A. Voth, J. Phys. Chem. B 117, 1269 (2013).

29M. A. Blanco, T. Perevozchikova, V. Martorana, M. Manno,
and C. J. Roberts, J. Phys. Chem. B 118, 5817 (2014).

30H. W. Hatch, J. Mittal, and V. K. Shen, J. Chem. Phys. 142,
164901 (2015).

31H. W. Hatch, S.-Y. Yang, J. Mittal, and V. K. Shen, Soft
Matter 12, 4170 (2016).

32J. W. Wagner, J. F. Dama, A. E. P. Durumeric, and G. A.
Voth, J. Chem. Phys. 145, 044108 (2016).

33R. D. Mountain, H. W. Hatch, and V. K. Shen, Fluid Ph.
Equilib 440, 87 (2017).

34J. F. Dama, J. Jin, and G. A. Voth, J. Chem. Theory Comput.
13, 1010 (2017).

35C. J. O’Brien, M. A. Blanco, J. A. Costanzo, M. Enterline,
E. J. Fernandez, A. S. Robinson, and C. J. Roberts, Protein
Eng. Des. Sel. 29, 231 (2016).

36G. V. Barnett, M. Drenski, V. Razinkov, W. F. Reed, and C. J.
Roberts, Anal. Biochem. 511, 80 (2016).

37C. Calero-Rubio, A. Saluja, E. Sahin, and C. J. Roberts, J.
Phys. Chem. B 123, 5709 (2019).

38M. A. Woldeyes, C. Calero-Rubio, E. M. Furst, and C. J.
Roberts, in Protein Self-Assembly: Methods and Protocols,
Methods in Molecular Biology, edited by J. J. McManus
(Springer New York, New York, NY, 2019) pp. 23–37.

39N. Skar-Gislinge, M. Ronti, T. Garting, C. Rischel, P. Schurten-
berger, E. Zaccarelli, and A. Stradner, Mol. Pharmaceutics 16,
2394 (2019).

40H. Shahfar, J. K. Forder, and C. J. Roberts, J. Phys. Chem. B
125, 3574 (2021).

41S. Mahapatra, M. Polimeni, L. Gentiluomo, D. Roessner,
W. Frieß, G. H. J. Peters, W. W. Streicher, M. Lund, and
P. Harris, Mol. Pharmaceutics 19, 508 (2022).

42J. K. Forder, A. J. Ilott, E. Sahin, and C. J. Roberts, AIChE
J. 69, e17965 (2023).

43M. Polimeni, E. Zaccarelli, A. Gulotta, M. Lund, A. Stradner,
and P. Schurtenberger, APL Bioeng. 8, 016111 (2024).

44J. K. Forder, V. Palakollu, S. Adhikari, M. A. Blanco, M. G.
Derebe, H. M. Ferguson, S. A. Luthra, E. V. Munsell, and C. J.
Roberts, Mol. Pharmaceutics 21, 1321 (2024).

45A. Grünberger, P.-K. Lai, M. A. Blanco, and C. J. Roberts, J.
Phys. Chem. B 117, 763 (2013).

46M. A. Blanco, E. Sahin, A. S. Robinson, and C. J. Roberts, J.
Phys. Chem. B 117, 16013 (2013).

47C. Calero-Rubio, A. Saluja, and C. J. Roberts, J. Phys. Chem.
B 120, 6592 (2016).

48A. Chowdhury, J. A. Bollinger, B. J. Dear, J. K. Cheung, K. P.
Johnston, and T. M. Truskett, Mol. Pharmaceutics 17, 1748
(2020).

49J. J. Hung, W. F. Zeno, A. A. Chowdhury, B. J. Dear, K. Ra-
machandran, M. P. Nieto, T. Y. Shay, C. A. Karouta, C. C.
Hayden, J. K. Cheung, T. M. Truskett, J. C. Stachowiak, and
K. P. Johnston, Soft Matter 15, 6660 (2019).

50B. J. Dear, J. A. Bollinger, A. Chowdhury, J. J. Hung, L. R.
Wilks, C. A. Karouta, K. Ramachandran, T. Y. Shay, M. P. Ni-



15

eto, A. Sharma, J. K. Cheung, D. Nykypanchuk, P. D. Godfrin,
K. P. Johnston, and T. M. Truskett, J. Phys. Chem. B 123,
5274 (2019).

51N. Skar-Gislinge, F. Camerin, A. Stradner, E. Zaccarelli, and
P. Schurtenberger, Molecular Pharmaceutics 20, 2738 (2023).

52M. A. Blanco, H. W. Hatch, J. E. Curtis, and V. K. Shen, J.
Pharm. Sci. 108, 1663 (2019).

53P. Mereghetti, R. R. Gabdoulline, and R. C. Wade, Biophys.
J. 99, 3782 (2010).

54S. R. McGuffee and A. H. Elcock, PLoS Comput. Biol. 6,
e1000694 (2010).

55V. Prytkova, M. Heyden, D. Khago, J. A. Freites, C. T. Butts,
R. W. Martin, and D. J. Tobias, J. Phys. Chem. B 120, 8115
(2016).

56B. B. Majumdar, V. Prytkova, E. K. Wong, J. A. Freites, D. J.
Tobias, and M. Heyden, J. Chem. Theory Comput. 15, 1399
(2019).

57B. B. Majumdar, S. Ebbinghaus, and M. Heyden, J. Theor.
Comput. Chem. 17, 1840006 (2018).

58S. P. Carmichael and M. S. Shell, J. Chem. Phys. 139, 164705
(2013).

59H. W. Hatch, W. P. Krekelberg, S. D. Hudson, and V. K. Shen,
J. Chem. Phys. 144, 194902 (2016).

60H. W. Hatch, N. A. Mahynski, R. P. Murphy, M. A. Blanco,
and V. K. Shen, AIP Adv. 8, 095210 (2018).

61R. P. Murphy, H. W. Hatch, N. A. Mahynski, V. K. Shen, and
N. J. Wagner, Soft Matter 16, 1279 (2020).

62H. W. Hatch and G. W. McCann, J. Res. Natl. Inst. Stand.
Technol 124, 1 (2019).

63I. A. Vakser, S. Grudinin, N. W. Jenkins, P. J. Kundrotas, and
E. J. Deeds, Proc. Natl. Acad. Sci. U.S.A. 119, e2210249119
(2022).

64S. Qin and H.-X. Zhou, J. Phys. Chem. B 123, 8203 (2019).
65A. J. Schultz and D. A. Kofke, J. Chem. Phys. 157, 190901
(2022).
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114R. Salomon-Ferrer, A. W. Götz, D. Poole, S. Le Grand, and

R. C. Walker, J. Chem. Theory Comput. 9, 3878 (2013).
115J.-P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, J. Comput.

Phys. 23, 327 (1977).
116C. W. Hopkins, S. Le Grand, R. C. Walker, and A. E. Roitberg,

J. Chem. Theory Comput. 11, 1864 (2015).
117T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089

(1993).
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